File size: 16,052 Bytes
4fe84f7 5df3380 4fe84f7 ae99c39 4fe84f7 3cb2103 ae99c39 4fe84f7 6bba07a 8cc3220 4fe84f7 5de53e3 4fe84f7 6c23426 4fe84f7 b983100 6bba07a 8cc3220 6bba07a 8cc3220 6bba07a b983100 5de53e3 4fe84f7 5de53e3 4fe84f7 8cc3220 4fe84f7 8cc3220 2c65207 4fe84f7 2c65207 4fe84f7 2c65207 4fe84f7 2c65207 4fe84f7 2c65207 4fe84f7 2c65207 4fe84f7 2c65207 5b90b9a 2c65207 5b90b9a 4fe84f7 2c65207 5b90b9a 2c65207 5b90b9a 2c65207 4fe84f7 5df3380 4fe84f7 5de53e3 4fe84f7 6bba07a 4fe84f7 6bba07a 4fe84f7 6bba07a 4fe84f7 29688cd 4fe84f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
---
library_name: pytorch
license: apache-2.0
pipeline_tag: object-detection
tags:
- real_time
- android
---
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/mediapipe_hand/web-assets/model_demo.png)
# MediaPipe-Hand-Detection: Optimized for Mobile Deployment
## Real-time hand detection optimized for mobile and edge
The MediaPipe Hand Landmark Detector is a machine learning pipeline that predicts bounding boxes and pose skeletons of hands in an image.
This model is an implementation of MediaPipe-Hand-Detection found [here](https://github.com/zmurez/MediaPipePyTorch/).
This repository provides scripts to run MediaPipe-Hand-Detection on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/mediapipe_hand).
### Model Details
- **Model Type:** Object detection
- **Model Stats:**
- Input resolution: 256x256
- Number of parameters (MediaPipeHandDetector): 1.76M
- Model size (MediaPipeHandDetector): 6.76 MB
- Number of parameters (MediaPipeHandLandmarkDetector): 2.01M
- Model size (MediaPipeHandLandmarkDetector): 7.71 MB
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| MediaPipeHandDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.722 ms | 0 - 22 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
| MediaPipeHandDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.182 ms | 0 - 6 MB | FP16 | NPU | [MediaPipe-Hand-Detection.onnx](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.onnx) |
| MediaPipeHandDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.518 ms | 0 - 19 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
| MediaPipeHandDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.859 ms | 0 - 70 MB | FP16 | NPU | [MediaPipe-Hand-Detection.onnx](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.onnx) |
| MediaPipeHandDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.523 ms | 0 - 16 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
| MediaPipeHandDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.728 ms | 0 - 36 MB | FP16 | NPU | [MediaPipe-Hand-Detection.onnx](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.onnx) |
| MediaPipeHandDetector | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.713 ms | 0 - 75 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
| MediaPipeHandDetector | SA7255P ADP | SA7255P | TFLITE | 24.782 ms | 0 - 17 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
| MediaPipeHandDetector | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.716 ms | 0 - 22 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
| MediaPipeHandDetector | SA8295P ADP | SA8295P | TFLITE | 1.754 ms | 0 - 11 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
| MediaPipeHandDetector | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.723 ms | 0 - 22 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
| MediaPipeHandDetector | SA8775P ADP | SA8775P | TFLITE | 1.526 ms | 0 - 16 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
| MediaPipeHandDetector | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.292 ms | 0 - 19 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
| MediaPipeHandDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.19 ms | 4 - 4 MB | FP16 | NPU | [MediaPipe-Hand-Detection.onnx](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.onnx) |
| MediaPipeHandLandmarkDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.019 ms | 0 - 36 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
| MediaPipeHandLandmarkDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.544 ms | 0 - 8 MB | FP16 | NPU | [MediaPipe-Hand-Detection.onnx](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.onnx) |
| MediaPipeHandLandmarkDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.731 ms | 0 - 18 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
| MediaPipeHandLandmarkDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 1.135 ms | 0 - 69 MB | FP16 | NPU | [MediaPipe-Hand-Detection.onnx](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.onnx) |
| MediaPipeHandLandmarkDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.698 ms | 0 - 17 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
| MediaPipeHandLandmarkDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 1.066 ms | 0 - 40 MB | FP16 | NPU | [MediaPipe-Hand-Detection.onnx](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.onnx) |
| MediaPipeHandLandmarkDetector | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.001 ms | 0 - 6 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
| MediaPipeHandLandmarkDetector | SA7255P ADP | SA7255P | TFLITE | 35.495 ms | 0 - 16 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
| MediaPipeHandLandmarkDetector | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.018 ms | 0 - 47 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
| MediaPipeHandLandmarkDetector | SA8295P ADP | SA8295P | TFLITE | 2.271 ms | 0 - 12 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
| MediaPipeHandLandmarkDetector | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.023 ms | 0 - 229 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
| MediaPipeHandLandmarkDetector | SA8775P ADP | SA8775P | TFLITE | 2.213 ms | 0 - 17 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
| MediaPipeHandLandmarkDetector | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.795 ms | 0 - 16 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
| MediaPipeHandLandmarkDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.649 ms | 6 - 6 MB | FP16 | NPU | [MediaPipe-Hand-Detection.onnx](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.onnx) |
## Installation
This model can be installed as a Python package via pip.
```bash
pip install qai-hub-models
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.mediapipe_hand.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.mediapipe_hand.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.mediapipe_hand.export
```
```
Profiling Results
------------------------------------------------------------
MediaPipeHandDetector
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 0.7
Estimated peak memory usage (MB): [0, 22]
Total # Ops : 149
Compute Unit(s) : NPU (149 ops)
------------------------------------------------------------
MediaPipeHandLandmarkDetector
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 1.0
Estimated peak memory usage (MB): [0, 36]
Total # Ops : 158
Compute Unit(s) : NPU (158 ops)
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/mediapipe_hand/qai_hub_models/models/MediaPipe-Hand-Detection/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.mediapipe_hand import Model
# Load the model
model = Model.from_pretrained()
hand_detector_model = model.hand_detector
hand_landmark_detector_model = model.hand_landmark_detector
# Device
device = hub.Device("Samsung Galaxy S23")
# Trace model
hand_detector_input_shape = hand_detector_model.get_input_spec()
hand_detector_sample_inputs = hand_detector_model.sample_inputs()
traced_hand_detector_model = torch.jit.trace(hand_detector_model, [torch.tensor(data[0]) for _, data in hand_detector_sample_inputs.items()])
# Compile model on a specific device
hand_detector_compile_job = hub.submit_compile_job(
model=traced_hand_detector_model ,
device=device,
input_specs=hand_detector_model.get_input_spec(),
)
# Get target model to run on-device
hand_detector_target_model = hand_detector_compile_job.get_target_model()
# Trace model
hand_landmark_detector_input_shape = hand_landmark_detector_model.get_input_spec()
hand_landmark_detector_sample_inputs = hand_landmark_detector_model.sample_inputs()
traced_hand_landmark_detector_model = torch.jit.trace(hand_landmark_detector_model, [torch.tensor(data[0]) for _, data in hand_landmark_detector_sample_inputs.items()])
# Compile model on a specific device
hand_landmark_detector_compile_job = hub.submit_compile_job(
model=traced_hand_landmark_detector_model ,
device=device,
input_specs=hand_landmark_detector_model.get_input_spec(),
)
# Get target model to run on-device
hand_landmark_detector_target_model = hand_landmark_detector_compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
hand_detector_profile_job = hub.submit_profile_job(
model=hand_detector_target_model,
device=device,
)
hand_landmark_detector_profile_job = hub.submit_profile_job(
model=hand_landmark_detector_target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
hand_detector_input_data = hand_detector_model.sample_inputs()
hand_detector_inference_job = hub.submit_inference_job(
model=hand_detector_target_model,
device=device,
inputs=hand_detector_input_data,
)
hand_detector_inference_job.download_output_data()
hand_landmark_detector_input_data = hand_landmark_detector_model.sample_inputs()
hand_landmark_detector_inference_job = hub.submit_inference_job(
model=hand_landmark_detector_target_model,
device=device,
inputs=hand_landmark_detector_input_data,
)
hand_landmark_detector_inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on MediaPipe-Hand-Detection's performance across various devices [here](https://aihub.qualcomm.com/models/mediapipe_hand).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of MediaPipe-Hand-Detection can be found [here](https://github.com/zmurez/MediaPipePyTorch/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [MediaPipe Hands: On-device Real-time Hand Tracking](https://arxiv.org/abs/2006.10214)
* [Source Model Implementation](https://github.com/zmurez/MediaPipePyTorch/)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
|