qaihm-bot commited on
Commit
e66d133
1 Parent(s): 21d9242

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +11 -10
README.md CHANGED
@@ -11,7 +11,7 @@ tags:
11
  ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_det/web-assets/model_demo.png)
12
 
13
  # YOLOv8-Detection: Optimized for Mobile Deployment
14
- ## Real-time object detection optimized for mobile and edge
15
 
16
  Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes and classes of objects in an image.
17
 
@@ -33,8 +33,8 @@ More details on model performance across various devices, can be found
33
 
34
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
  | ---|---|---|---|---|---|---|---|
36
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 9.251 ms | 0 - 3 MB | FP16 | NPU | [YOLOv8-Detection.tflite](https://huggingface.co/qualcomm/Yolo-v8-Detection/blob/main/Yolo-v8-Detection.tflite)
37
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 7.043 ms | 5 - 19 MB | FP16 | NPU | [YOLOv8-Detection.so](https://huggingface.co/qualcomm/Yolo-v8-Detection/blob/main/Yolo-v8-Detection.so)
38
 
39
 
40
  ## Installation
@@ -95,23 +95,23 @@ python -m qai_hub_models.models.yolov8_det.export
95
  ```
96
  Profile Job summary of YOLOv8-Detection
97
  --------------------------------------------------
98
- Device: Samsung Galaxy S23 Ultra (13)
99
- Estimated Inference Time: 9.25 ms
100
- Estimated Peak Memory Range: 0.22-2.53 MB
101
  Compute Units: NPU (300) | Total (300)
102
 
103
  Profile Job summary of YOLOv8-Detection
104
  --------------------------------------------------
105
- Device: Samsung Galaxy S23 Ultra (13)
106
- Estimated Inference Time: 7.04 ms
107
- Estimated Peak Memory Range: 4.71-18.66 MB
108
  Compute Units: NPU (294) | Total (294)
109
 
110
 
111
  ```
112
  ## How does this work?
113
 
114
- This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Yolo-v8-Detection/export.py)
115
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
116
  on-device. Lets go through each step below in detail:
117
 
@@ -224,6 +224,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
224
  ## License
225
  - The license for the original implementation of YOLOv8-Detection can be found
226
  [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
 
227
 
228
  ## References
229
  * [Real-Time Flying Object Detection with YOLOv8](https://arxiv.org/abs/2305.09972)
 
11
  ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_det/web-assets/model_demo.png)
12
 
13
  # YOLOv8-Detection: Optimized for Mobile Deployment
14
+ ## Real-time object detection optimized for mobile and edge by Ultralytics
15
 
16
  Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes and classes of objects in an image.
17
 
 
33
 
34
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
  | ---|---|---|---|---|---|---|---|
36
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 9.217 ms | 0 - 18 MB | FP16 | NPU | [YOLOv8-Detection.tflite](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.tflite)
37
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 7.039 ms | 5 - 18 MB | FP16 | NPU | [YOLOv8-Detection.so](https://huggingface.co/qualcomm/YOLOv8-Detection/blob/main/YOLOv8-Detection.so)
38
 
39
 
40
  ## Installation
 
95
  ```
96
  Profile Job summary of YOLOv8-Detection
97
  --------------------------------------------------
98
+ Device: Samsung Galaxy S24 (14)
99
+ Estimated Inference Time: 6.50 ms
100
+ Estimated Peak Memory Range: 0.02-79.98 MB
101
  Compute Units: NPU (300) | Total (300)
102
 
103
  Profile Job summary of YOLOv8-Detection
104
  --------------------------------------------------
105
+ Device: Samsung Galaxy S24 (14)
106
+ Estimated Inference Time: 4.84 ms
107
+ Estimated Peak Memory Range: 4.72-117.70 MB
108
  Compute Units: NPU (294) | Total (294)
109
 
110
 
111
  ```
112
  ## How does this work?
113
 
114
+ This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/YOLOv8-Detection/export.py)
115
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
116
  on-device. Lets go through each step below in detail:
117
 
 
224
  ## License
225
  - The license for the original implementation of YOLOv8-Detection can be found
226
  [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
227
+ - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
228
 
229
  ## References
230
  * [Real-Time Flying Object Detection with YOLOv8](https://arxiv.org/abs/2305.09972)