Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -36,7 +36,8 @@ More details on model performance across various devices, can be found
|
|
36 |
|
37 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
| ---|---|---|---|---|---|---|---|
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 6.
|
|
|
40 |
|
41 |
|
42 |
|
@@ -95,6 +96,16 @@ device. This script does the following:
|
|
95 |
python -m qai_hub_models.models.yolov8_seg.export
|
96 |
```
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
|
100 |
## How does this work?
|
|
|
36 |
|
37 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
| ---|---|---|---|---|---|---|---|
|
39 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 6.539 ms | 0 - 35 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite)
|
40 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 6.404 ms | 4 - 16 MB | FP16 | NPU | [YOLOv8-Segmentation.so](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.so)
|
41 |
|
42 |
|
43 |
|
|
|
96 |
python -m qai_hub_models.models.yolov8_seg.export
|
97 |
```
|
98 |
|
99 |
+
```
|
100 |
+
Profile Job summary of YOLOv8-Segmentation
|
101 |
+
--------------------------------------------------
|
102 |
+
Device: Snapdragon X Elite CRD (11)
|
103 |
+
Estimated Inference Time: 6.57 ms
|
104 |
+
Estimated Peak Memory Range: 4.70-4.70 MB
|
105 |
+
Compute Units: NPU (333) | Total (333)
|
106 |
+
|
107 |
+
|
108 |
+
```
|
109 |
|
110 |
|
111 |
## How does this work?
|