qaihm-bot commited on
Commit
0eb2266
1 Parent(s): 99023e3

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +12 -1
README.md CHANGED
@@ -36,7 +36,8 @@ More details on model performance across various devices, can be found
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 6.484 ms | 4 - 14 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite)
 
40
 
41
 
42
 
@@ -95,6 +96,16 @@ device. This script does the following:
95
  python -m qai_hub_models.models.yolov8_seg.export
96
  ```
97
 
 
 
 
 
 
 
 
 
 
 
98
 
99
 
100
  ## How does this work?
 
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 6.539 ms | 0 - 35 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite)
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 6.404 ms | 4 - 16 MB | FP16 | NPU | [YOLOv8-Segmentation.so](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.so)
41
 
42
 
43
 
 
96
  python -m qai_hub_models.models.yolov8_seg.export
97
  ```
98
 
99
+ ```
100
+ Profile Job summary of YOLOv8-Segmentation
101
+ --------------------------------------------------
102
+ Device: Snapdragon X Elite CRD (11)
103
+ Estimated Inference Time: 6.57 ms
104
+ Estimated Peak Memory Range: 4.70-4.70 MB
105
+ Compute Units: NPU (333) | Total (333)
106
+
107
+
108
+ ```
109
 
110
 
111
  ## How does this work?