qaihm-bot commited on
Commit
9849dab
1 Parent(s): 62960a8

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +8 -7
README.md CHANGED
@@ -11,7 +11,7 @@ tags:
11
  ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_seg/web-assets/model_demo.png)
12
 
13
  # YOLOv8-Segmentation: Optimized for Mobile Deployment
14
- ## Real-time object segmentation optimized for mobile and edge
15
 
16
  Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.
17
 
@@ -25,7 +25,7 @@ More details on model performance across various devices, can be found
25
 
26
  - **Model Type:** Semantic segmentation
27
  - **Model Stats:**
28
- - Model checkpoint: YOLOv8-Seg
29
  - Input resolution: 640x640
30
  - Number of parameters: 3.43M
31
  - Model size: 13.2 MB
@@ -33,7 +33,7 @@ More details on model performance across various devices, can be found
33
 
34
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
  | ---|---|---|---|---|---|---|---|
36
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 10.686 ms | 4 - 7 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/Yolo-v8-Segmentation/blob/main/Yolo-v8-Segmentation.tflite)
37
 
38
 
39
  ## Installation
@@ -94,16 +94,16 @@ python -m qai_hub_models.models.yolov8_seg.export
94
  ```
95
  Profile Job summary of YOLOv8-Segmentation
96
  --------------------------------------------------
97
- Device: Samsung Galaxy S23 Ultra (13)
98
- Estimated Inference Time: 10.69 ms
99
- Estimated Peak Memory Range: 4.40-6.50 MB
100
  Compute Units: NPU (337) | Total (337)
101
 
102
 
103
  ```
104
  ## How does this work?
105
 
106
- This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Yolo-v8-Segmentation/export.py)
107
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
108
  on-device. Lets go through each step below in detail:
109
 
@@ -216,6 +216,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
216
  ## License
217
  - The license for the original implementation of YOLOv8-Segmentation can be found
218
  [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
 
219
 
220
  ## References
221
  * [Real-Time Flying Object Detection with YOLOv8](https://arxiv.org/abs/2305.09972)
 
11
  ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_seg/web-assets/model_demo.png)
12
 
13
  # YOLOv8-Segmentation: Optimized for Mobile Deployment
14
+ ## Real-time object segmentation optimized for mobile and edge by Ultralytics
15
 
16
  Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.
17
 
 
25
 
26
  - **Model Type:** Semantic segmentation
27
  - **Model Stats:**
28
+ - Model checkpoint: YOLOv8N-Seg
29
  - Input resolution: 640x640
30
  - Number of parameters: 3.43M
31
  - Model size: 13.2 MB
 
33
 
34
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
  | ---|---|---|---|---|---|---|---|
36
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 10.665 ms | 4 - 7 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite)
37
 
38
 
39
  ## Installation
 
94
  ```
95
  Profile Job summary of YOLOv8-Segmentation
96
  --------------------------------------------------
97
+ Device: Samsung Galaxy S24 (14)
98
+ Estimated Inference Time: 7.42 ms
99
+ Estimated Peak Memory Range: 0.05-87.37 MB
100
  Compute Units: NPU (337) | Total (337)
101
 
102
 
103
  ```
104
  ## How does this work?
105
 
106
+ This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/YOLOv8-Segmentation/export.py)
107
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
108
  on-device. Lets go through each step below in detail:
109
 
 
216
  ## License
217
  - The license for the original implementation of YOLOv8-Segmentation can be found
218
  [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
219
+ - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
220
 
221
  ## References
222
  * [Real-Time Flying Object Detection with YOLOv8](https://arxiv.org/abs/2305.09972)