Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -11,7 +11,7 @@ tags:
|
|
11 |
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_seg/web-assets/model_demo.png)
|
12 |
|
13 |
# YOLOv8-Segmentation: Optimized for Mobile Deployment
|
14 |
-
## Real-time object segmentation optimized for mobile and edge
|
15 |
|
16 |
Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.
|
17 |
|
@@ -25,7 +25,7 @@ More details on model performance across various devices, can be found
|
|
25 |
|
26 |
- **Model Type:** Semantic segmentation
|
27 |
- **Model Stats:**
|
28 |
-
- Model checkpoint:
|
29 |
- Input resolution: 640x640
|
30 |
- Number of parameters: 3.43M
|
31 |
- Model size: 13.2 MB
|
@@ -33,7 +33,7 @@ More details on model performance across various devices, can be found
|
|
33 |
|
34 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
| ---|---|---|---|---|---|---|---|
|
36 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 10.
|
37 |
|
38 |
|
39 |
## Installation
|
@@ -94,16 +94,16 @@ python -m qai_hub_models.models.yolov8_seg.export
|
|
94 |
```
|
95 |
Profile Job summary of YOLOv8-Segmentation
|
96 |
--------------------------------------------------
|
97 |
-
Device: Samsung Galaxy
|
98 |
-
Estimated Inference Time:
|
99 |
-
Estimated Peak Memory Range:
|
100 |
Compute Units: NPU (337) | Total (337)
|
101 |
|
102 |
|
103 |
```
|
104 |
## How does this work?
|
105 |
|
106 |
-
This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/
|
107 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
108 |
on-device. Lets go through each step below in detail:
|
109 |
|
@@ -216,6 +216,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
216 |
## License
|
217 |
- The license for the original implementation of YOLOv8-Segmentation can be found
|
218 |
[here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
|
|
|
219 |
|
220 |
## References
|
221 |
* [Real-Time Flying Object Detection with YOLOv8](https://arxiv.org/abs/2305.09972)
|
|
|
11 |
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_seg/web-assets/model_demo.png)
|
12 |
|
13 |
# YOLOv8-Segmentation: Optimized for Mobile Deployment
|
14 |
+
## Real-time object segmentation optimized for mobile and edge by Ultralytics
|
15 |
|
16 |
Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes, segmentation masks and classes of objects in an image.
|
17 |
|
|
|
25 |
|
26 |
- **Model Type:** Semantic segmentation
|
27 |
- **Model Stats:**
|
28 |
+
- Model checkpoint: YOLOv8N-Seg
|
29 |
- Input resolution: 640x640
|
30 |
- Number of parameters: 3.43M
|
31 |
- Model size: 13.2 MB
|
|
|
33 |
|
34 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
| ---|---|---|---|---|---|---|---|
|
36 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 10.665 ms | 4 - 7 MB | FP16 | NPU | [YOLOv8-Segmentation.tflite](https://huggingface.co/qualcomm/YOLOv8-Segmentation/blob/main/YOLOv8-Segmentation.tflite)
|
37 |
|
38 |
|
39 |
## Installation
|
|
|
94 |
```
|
95 |
Profile Job summary of YOLOv8-Segmentation
|
96 |
--------------------------------------------------
|
97 |
+
Device: Samsung Galaxy S24 (14)
|
98 |
+
Estimated Inference Time: 7.42 ms
|
99 |
+
Estimated Peak Memory Range: 0.05-87.37 MB
|
100 |
Compute Units: NPU (337) | Total (337)
|
101 |
|
102 |
|
103 |
```
|
104 |
## How does this work?
|
105 |
|
106 |
+
This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/YOLOv8-Segmentation/export.py)
|
107 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
108 |
on-device. Lets go through each step below in detail:
|
109 |
|
|
|
216 |
## License
|
217 |
- The license for the original implementation of YOLOv8-Segmentation can be found
|
218 |
[here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
|
219 |
+
- The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
|
220 |
|
221 |
## References
|
222 |
* [Real-Time Flying Object Detection with YOLOv8](https://arxiv.org/abs/2305.09972)
|