File size: 4,902 Bytes
b0f91d7 269cc71 fb528e7 3859f88 18e674d 3859f88 1bceeb5 3859f88 59c2c46 3859f88 2947c0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
license: gpl-3.0
language:
- en
tags:
- feature extraction
- mobile apps
- reviews
- token classification
- named entity recognition
pipeline_tag: token-classification
widget:
- text: "The share note file feature is completely useless."
example_title: "Example 1"
- text: "Great app I've tested a lot of free habit tracking apps and this is by far my favorite."
example_title: "Example 2"
- text: "The only negative feedback I can give about this app is the difficulty level to set a sleep timer on it."
example_title: "Example 3"
- text: "Does what you want with a small pocket size checklist reminder app"
example_title: "Example 4"
- text: "Very bad because call recording notification send other person"
example_title: "Example 5"
- text: "I originally downloaded the app for pomodoro timing, but I stayed for the project management features, with syncing."
example_title: "Example 6"
- text: "It works accurate and I bought a portable one lap gps tracker it have a great battery Life"
example_title: "Example 7"
- text: "I'm my phone the notifications of group message are not at a time please check what was the reason behind it because due to this default I loose some opportunity"
example_title: "Example 8"
- text: "There is no setting for recurring alarms"
example_title: "Example 9"
---
# T-FREX XLNet base model
---
Please cite this research as:
_Q. Motger, A. Miaschi, F. Dell’Orletta, X. Franch, and J. Marco, ‘T-FREX: A Transformer-based Feature Extraction Method from Mobile App Reviews’, in Proceedings of The IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), 2024. Pre-print available at: https://arxiv.org/abs/2401.03833_
---
T-FREX is a transformer-based feature extraction method for mobile app reviews based on fine-tuning Large Language Models (LLMs) for a named entity recognition task. We collect a dataset of ground truth features from users in a real crowdsourced software recommendation platform, and we use this dataset to fine-tune multiple LLMs under different data configurations. We assess the performance of T-FREX with respect to this ground truth, and we complement our analysis by comparing T-FREX with a baseline method from the field. Finally, we assess the quality of new features predicted by T-FREX through an external human evaluation. Results show that T-FREX outperforms on average the traditional syntactic-based method, especially when discovering new features from a domain for which the model has been fine-tuned.
Source code for data generation, fine-tuning and model inference are available in the original [GitHub repository](https://github.com/gessi-chatbots/t-frex/).
## Model description
This version of T-FREX has been fine-tuned for [token classification](https://huggingface.co/docs/transformers/tasks/token_classification#train) from [XLNet base model](https://huggingface.co/xlnet-base-cased).
## Model variations
T-FREX includes a set of released, fine-tuned models which are compared in the original study (pre-print available at http://arxiv.org/abs/2401.03833).
- [**t-frex-bert-base-uncased**](https://huggingface.co/quim-motger/t-frex-bert-base-uncased)
- [**t-frex-bert-large-uncased**](https://huggingface.co/quim-motger/t-frex-bert-large-uncased)
- [**t-frex-roberta-base**](https://huggingface.co/quim-motger/t-frex-roberta-base)
- [**t-frex-roberta-large**](https://huggingface.co/quim-motger/t-frex-roberta-large)
- [**t-frex-xlnet-base-cased**](https://huggingface.co/quim-motger/t-frex-xlnet-base-cased)
- [**t-frex-xlnet-large-cased**](https://huggingface.co/quim-motger/t-frex-xlnet-large-cased)
## How to use
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
# Load the pre-trained model and tokenizer
model_name = "quim-motger/t-frex-xlnet-base-cased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForTokenClassification.from_pretrained(model_name)
# Create a pipeline for named entity recognition
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer)
# Example text
text = "The share note file feature is completely useless."
# Perform named entity recognition
entities = ner_pipeline(text)
# Print the recognized entities
for entity in entities:
print(f"Entity: {entity['word']}, Label: {entity['entity']}, Score: {entity['score']:.4f}")
# Example with multiple texts
texts = [
"Great app I've tested a lot of free habit tracking apps and this is by far my favorite.",
"The only negative feedback I can give about this app is the difficulty level to set a sleep timer on it."
]
# Perform named entity recognition on multiple texts
for text in texts:
entities = ner_pipeline(text)
print(f"Text: {text}")
for entity in entities:
print(f" Entity: {entity['word']}, Label: {entity['entity']}, Score: {entity['score']:.4f}")
``` |