quyanh commited on
Commit
e72ce5c
1 Parent(s): ad759cb

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 8,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "lm_head",
20
+ "gate_proj",
21
+ "v_proj",
22
+ "up_proj",
23
+ "k_proj",
24
+ "down_proj",
25
+ "q_proj",
26
+ "o_proj"
27
+ ],
28
+ "task_type": "CAUSAL_LM"
29
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a0ecc47abe96c76c2a70a7d6898097f8b8ce27edef5e31f5b3b0252f862662e
3
+ size 85202645
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab0984e49a7d56a9e3b67b13a1afd042001e5cca09e5bb82c4cee909dec163a2
3
+ size 43126695
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4faeab348e6c7b2d79d40fb867b996847e479eb749febe51120a97db1705120
3
+ size 14575
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:933395f7fd252489a558205952ea72f3d20cc20b5ccab7087d643266a68fdfff
3
+ size 627
trainer_state.json ADDED
@@ -0,0 +1,369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0554089709762533,
5
+ "eval_steps": 20,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.04,
13
+ "learning_rate": 1.9393939393939395e-05,
14
+ "loss": 1.8159,
15
+ "step": 20
16
+ },
17
+ {
18
+ "epoch": 0.04,
19
+ "eval_loss": 1.7643083333969116,
20
+ "eval_runtime": 200.2867,
21
+ "eval_samples_per_second": 1.962,
22
+ "eval_steps_per_second": 0.2,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.08,
27
+ "learning_rate": 1.8585858585858588e-05,
28
+ "loss": 1.7363,
29
+ "step": 40
30
+ },
31
+ {
32
+ "epoch": 0.08,
33
+ "eval_loss": 1.7077617645263672,
34
+ "eval_runtime": 200.122,
35
+ "eval_samples_per_second": 1.964,
36
+ "eval_steps_per_second": 0.2,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.13,
41
+ "learning_rate": 1.7777777777777777e-05,
42
+ "loss": 1.6855,
43
+ "step": 60
44
+ },
45
+ {
46
+ "epoch": 0.13,
47
+ "eval_loss": 1.6695836782455444,
48
+ "eval_runtime": 200.1343,
49
+ "eval_samples_per_second": 1.964,
50
+ "eval_steps_per_second": 0.2,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.17,
55
+ "learning_rate": 1.6969696969696972e-05,
56
+ "loss": 1.6775,
57
+ "step": 80
58
+ },
59
+ {
60
+ "epoch": 0.17,
61
+ "eval_loss": 1.6478480100631714,
62
+ "eval_runtime": 200.1259,
63
+ "eval_samples_per_second": 1.964,
64
+ "eval_steps_per_second": 0.2,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.21,
69
+ "learning_rate": 1.616161616161616e-05,
70
+ "loss": 1.6434,
71
+ "step": 100
72
+ },
73
+ {
74
+ "epoch": 0.21,
75
+ "eval_loss": 1.6339426040649414,
76
+ "eval_runtime": 200.1147,
77
+ "eval_samples_per_second": 1.964,
78
+ "eval_steps_per_second": 0.2,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.25,
83
+ "learning_rate": 1.5353535353535354e-05,
84
+ "loss": 1.6308,
85
+ "step": 120
86
+ },
87
+ {
88
+ "epoch": 0.25,
89
+ "eval_loss": 1.6241737604141235,
90
+ "eval_runtime": 200.0709,
91
+ "eval_samples_per_second": 1.964,
92
+ "eval_steps_per_second": 0.2,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.3,
97
+ "learning_rate": 1.4545454545454546e-05,
98
+ "loss": 1.6268,
99
+ "step": 140
100
+ },
101
+ {
102
+ "epoch": 0.3,
103
+ "eval_loss": 1.6161283254623413,
104
+ "eval_runtime": 200.0747,
105
+ "eval_samples_per_second": 1.964,
106
+ "eval_steps_per_second": 0.2,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.34,
111
+ "learning_rate": 1.3737373737373739e-05,
112
+ "loss": 1.6548,
113
+ "step": 160
114
+ },
115
+ {
116
+ "epoch": 0.34,
117
+ "eval_loss": 1.609245777130127,
118
+ "eval_runtime": 200.1029,
119
+ "eval_samples_per_second": 1.964,
120
+ "eval_steps_per_second": 0.2,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.38,
125
+ "learning_rate": 1.2929292929292931e-05,
126
+ "loss": 1.6244,
127
+ "step": 180
128
+ },
129
+ {
130
+ "epoch": 0.38,
131
+ "eval_loss": 1.6044949293136597,
132
+ "eval_runtime": 200.0563,
133
+ "eval_samples_per_second": 1.964,
134
+ "eval_steps_per_second": 0.2,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.42,
139
+ "learning_rate": 1.2121212121212122e-05,
140
+ "loss": 1.5961,
141
+ "step": 200
142
+ },
143
+ {
144
+ "epoch": 0.42,
145
+ "eval_loss": 1.600788950920105,
146
+ "eval_runtime": 200.0369,
147
+ "eval_samples_per_second": 1.965,
148
+ "eval_steps_per_second": 0.2,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.46,
153
+ "learning_rate": 1.1313131313131314e-05,
154
+ "loss": 1.5935,
155
+ "step": 220
156
+ },
157
+ {
158
+ "epoch": 0.46,
159
+ "eval_loss": 1.597257137298584,
160
+ "eval_runtime": 200.0532,
161
+ "eval_samples_per_second": 1.964,
162
+ "eval_steps_per_second": 0.2,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.51,
167
+ "learning_rate": 1.0505050505050507e-05,
168
+ "loss": 1.6057,
169
+ "step": 240
170
+ },
171
+ {
172
+ "epoch": 0.51,
173
+ "eval_loss": 1.594172716140747,
174
+ "eval_runtime": 200.1045,
175
+ "eval_samples_per_second": 1.964,
176
+ "eval_steps_per_second": 0.2,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.55,
181
+ "learning_rate": 9.696969696969698e-06,
182
+ "loss": 1.6175,
183
+ "step": 260
184
+ },
185
+ {
186
+ "epoch": 0.55,
187
+ "eval_loss": 1.591786503791809,
188
+ "eval_runtime": 200.1191,
189
+ "eval_samples_per_second": 1.964,
190
+ "eval_steps_per_second": 0.2,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.59,
195
+ "learning_rate": 8.888888888888888e-06,
196
+ "loss": 1.604,
197
+ "step": 280
198
+ },
199
+ {
200
+ "epoch": 0.59,
201
+ "eval_loss": 1.59005606174469,
202
+ "eval_runtime": 200.0537,
203
+ "eval_samples_per_second": 1.964,
204
+ "eval_steps_per_second": 0.2,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.63,
209
+ "learning_rate": 8.08080808080808e-06,
210
+ "loss": 1.6115,
211
+ "step": 300
212
+ },
213
+ {
214
+ "epoch": 0.63,
215
+ "eval_loss": 1.5883697271347046,
216
+ "eval_runtime": 200.1226,
217
+ "eval_samples_per_second": 1.964,
218
+ "eval_steps_per_second": 0.2,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.68,
223
+ "learning_rate": 7.272727272727273e-06,
224
+ "loss": 1.5942,
225
+ "step": 320
226
+ },
227
+ {
228
+ "epoch": 0.68,
229
+ "eval_loss": 1.5865776538848877,
230
+ "eval_runtime": 200.0942,
231
+ "eval_samples_per_second": 1.964,
232
+ "eval_steps_per_second": 0.2,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.72,
237
+ "learning_rate": 6.464646464646466e-06,
238
+ "loss": 1.587,
239
+ "step": 340
240
+ },
241
+ {
242
+ "epoch": 0.72,
243
+ "eval_loss": 1.5847071409225464,
244
+ "eval_runtime": 200.1145,
245
+ "eval_samples_per_second": 1.964,
246
+ "eval_steps_per_second": 0.2,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.76,
251
+ "learning_rate": 5.656565656565657e-06,
252
+ "loss": 1.5937,
253
+ "step": 360
254
+ },
255
+ {
256
+ "epoch": 0.76,
257
+ "eval_loss": 1.5834985971450806,
258
+ "eval_runtime": 200.0727,
259
+ "eval_samples_per_second": 1.964,
260
+ "eval_steps_per_second": 0.2,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.8,
265
+ "learning_rate": 4.848484848484849e-06,
266
+ "loss": 1.5836,
267
+ "step": 380
268
+ },
269
+ {
270
+ "epoch": 0.8,
271
+ "eval_loss": 1.5821855068206787,
272
+ "eval_runtime": 200.0752,
273
+ "eval_samples_per_second": 1.964,
274
+ "eval_steps_per_second": 0.2,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.84,
279
+ "learning_rate": 4.04040404040404e-06,
280
+ "loss": 1.6018,
281
+ "step": 400
282
+ },
283
+ {
284
+ "epoch": 0.84,
285
+ "eval_loss": 1.5811065435409546,
286
+ "eval_runtime": 200.0657,
287
+ "eval_samples_per_second": 1.964,
288
+ "eval_steps_per_second": 0.2,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.89,
293
+ "learning_rate": 3.232323232323233e-06,
294
+ "loss": 1.612,
295
+ "step": 420
296
+ },
297
+ {
298
+ "epoch": 0.89,
299
+ "eval_loss": 1.580207347869873,
300
+ "eval_runtime": 200.0806,
301
+ "eval_samples_per_second": 1.964,
302
+ "eval_steps_per_second": 0.2,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.93,
307
+ "learning_rate": 2.4242424242424244e-06,
308
+ "loss": 1.6067,
309
+ "step": 440
310
+ },
311
+ {
312
+ "epoch": 0.93,
313
+ "eval_loss": 1.5794427394866943,
314
+ "eval_runtime": 200.0838,
315
+ "eval_samples_per_second": 1.964,
316
+ "eval_steps_per_second": 0.2,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.97,
321
+ "learning_rate": 1.6161616161616164e-06,
322
+ "loss": 1.6014,
323
+ "step": 460
324
+ },
325
+ {
326
+ "epoch": 0.97,
327
+ "eval_loss": 1.5789347887039185,
328
+ "eval_runtime": 200.1151,
329
+ "eval_samples_per_second": 1.964,
330
+ "eval_steps_per_second": 0.2,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 1.01,
335
+ "learning_rate": 8.080808080808082e-07,
336
+ "loss": 1.5994,
337
+ "step": 480
338
+ },
339
+ {
340
+ "epoch": 1.01,
341
+ "eval_loss": 1.5785064697265625,
342
+ "eval_runtime": 200.1139,
343
+ "eval_samples_per_second": 1.964,
344
+ "eval_steps_per_second": 0.2,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 1.06,
349
+ "learning_rate": 0.0,
350
+ "loss": 1.5745,
351
+ "step": 500
352
+ },
353
+ {
354
+ "epoch": 1.06,
355
+ "eval_loss": 1.5784260034561157,
356
+ "eval_runtime": 200.0898,
357
+ "eval_samples_per_second": 1.964,
358
+ "eval_steps_per_second": 0.2,
359
+ "step": 500
360
+ }
361
+ ],
362
+ "logging_steps": 20,
363
+ "max_steps": 500,
364
+ "num_train_epochs": 2,
365
+ "save_steps": 20,
366
+ "total_flos": 3.504605136766894e+17,
367
+ "trial_name": null,
368
+ "trial_params": null
369
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:678c767a2f603867aeb9f44e665d0e3bbd1388dc7078c44783ce4dfb54f21e92
3
+ size 4027