Upload folder using huggingface_hub
Browse files- README.md +219 -0
- adapter_config.json +29 -0
- adapter_model.bin +3 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- trainer_state.json +369 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: mistralai/Mistral-7B-v0.1
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
The following `bitsandbytes` quantization config was used during training:
|
205 |
+
- quant_method: bitsandbytes
|
206 |
+
- load_in_8bit: False
|
207 |
+
- load_in_4bit: True
|
208 |
+
- llm_int8_threshold: 6.0
|
209 |
+
- llm_int8_skip_modules: None
|
210 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
211 |
+
- llm_int8_has_fp16_weight: False
|
212 |
+
- bnb_4bit_quant_type: nf4
|
213 |
+
- bnb_4bit_use_double_quant: True
|
214 |
+
- bnb_4bit_compute_dtype: bfloat16
|
215 |
+
|
216 |
+
### Framework versions
|
217 |
+
|
218 |
+
|
219 |
+
- PEFT 0.6.0.dev0
|
adapter_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 32,
|
12 |
+
"lora_dropout": 0.05,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"lm_head",
|
20 |
+
"gate_proj",
|
21 |
+
"v_proj",
|
22 |
+
"up_proj",
|
23 |
+
"k_proj",
|
24 |
+
"down_proj",
|
25 |
+
"q_proj",
|
26 |
+
"o_proj"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM"
|
29 |
+
}
|
adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a0ecc47abe96c76c2a70a7d6898097f8b8ce27edef5e31f5b3b0252f862662e
|
3 |
+
size 85202645
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab0984e49a7d56a9e3b67b13a1afd042001e5cca09e5bb82c4cee909dec163a2
|
3 |
+
size 43126695
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4faeab348e6c7b2d79d40fb867b996847e479eb749febe51120a97db1705120
|
3 |
+
size 14575
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:933395f7fd252489a558205952ea72f3d20cc20b5ccab7087d643266a68fdfff
|
3 |
+
size 627
|
trainer_state.json
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0554089709762533,
|
5 |
+
"eval_steps": 20,
|
6 |
+
"global_step": 500,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.04,
|
13 |
+
"learning_rate": 1.9393939393939395e-05,
|
14 |
+
"loss": 1.8159,
|
15 |
+
"step": 20
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.04,
|
19 |
+
"eval_loss": 1.7643083333969116,
|
20 |
+
"eval_runtime": 200.2867,
|
21 |
+
"eval_samples_per_second": 1.962,
|
22 |
+
"eval_steps_per_second": 0.2,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.08,
|
27 |
+
"learning_rate": 1.8585858585858588e-05,
|
28 |
+
"loss": 1.7363,
|
29 |
+
"step": 40
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"epoch": 0.08,
|
33 |
+
"eval_loss": 1.7077617645263672,
|
34 |
+
"eval_runtime": 200.122,
|
35 |
+
"eval_samples_per_second": 1.964,
|
36 |
+
"eval_steps_per_second": 0.2,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.13,
|
41 |
+
"learning_rate": 1.7777777777777777e-05,
|
42 |
+
"loss": 1.6855,
|
43 |
+
"step": 60
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"epoch": 0.13,
|
47 |
+
"eval_loss": 1.6695836782455444,
|
48 |
+
"eval_runtime": 200.1343,
|
49 |
+
"eval_samples_per_second": 1.964,
|
50 |
+
"eval_steps_per_second": 0.2,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.17,
|
55 |
+
"learning_rate": 1.6969696969696972e-05,
|
56 |
+
"loss": 1.6775,
|
57 |
+
"step": 80
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.17,
|
61 |
+
"eval_loss": 1.6478480100631714,
|
62 |
+
"eval_runtime": 200.1259,
|
63 |
+
"eval_samples_per_second": 1.964,
|
64 |
+
"eval_steps_per_second": 0.2,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.21,
|
69 |
+
"learning_rate": 1.616161616161616e-05,
|
70 |
+
"loss": 1.6434,
|
71 |
+
"step": 100
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 0.21,
|
75 |
+
"eval_loss": 1.6339426040649414,
|
76 |
+
"eval_runtime": 200.1147,
|
77 |
+
"eval_samples_per_second": 1.964,
|
78 |
+
"eval_steps_per_second": 0.2,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.25,
|
83 |
+
"learning_rate": 1.5353535353535354e-05,
|
84 |
+
"loss": 1.6308,
|
85 |
+
"step": 120
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"epoch": 0.25,
|
89 |
+
"eval_loss": 1.6241737604141235,
|
90 |
+
"eval_runtime": 200.0709,
|
91 |
+
"eval_samples_per_second": 1.964,
|
92 |
+
"eval_steps_per_second": 0.2,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.3,
|
97 |
+
"learning_rate": 1.4545454545454546e-05,
|
98 |
+
"loss": 1.6268,
|
99 |
+
"step": 140
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.3,
|
103 |
+
"eval_loss": 1.6161283254623413,
|
104 |
+
"eval_runtime": 200.0747,
|
105 |
+
"eval_samples_per_second": 1.964,
|
106 |
+
"eval_steps_per_second": 0.2,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.34,
|
111 |
+
"learning_rate": 1.3737373737373739e-05,
|
112 |
+
"loss": 1.6548,
|
113 |
+
"step": 160
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 0.34,
|
117 |
+
"eval_loss": 1.609245777130127,
|
118 |
+
"eval_runtime": 200.1029,
|
119 |
+
"eval_samples_per_second": 1.964,
|
120 |
+
"eval_steps_per_second": 0.2,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.38,
|
125 |
+
"learning_rate": 1.2929292929292931e-05,
|
126 |
+
"loss": 1.6244,
|
127 |
+
"step": 180
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"epoch": 0.38,
|
131 |
+
"eval_loss": 1.6044949293136597,
|
132 |
+
"eval_runtime": 200.0563,
|
133 |
+
"eval_samples_per_second": 1.964,
|
134 |
+
"eval_steps_per_second": 0.2,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.42,
|
139 |
+
"learning_rate": 1.2121212121212122e-05,
|
140 |
+
"loss": 1.5961,
|
141 |
+
"step": 200
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.42,
|
145 |
+
"eval_loss": 1.600788950920105,
|
146 |
+
"eval_runtime": 200.0369,
|
147 |
+
"eval_samples_per_second": 1.965,
|
148 |
+
"eval_steps_per_second": 0.2,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.46,
|
153 |
+
"learning_rate": 1.1313131313131314e-05,
|
154 |
+
"loss": 1.5935,
|
155 |
+
"step": 220
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"epoch": 0.46,
|
159 |
+
"eval_loss": 1.597257137298584,
|
160 |
+
"eval_runtime": 200.0532,
|
161 |
+
"eval_samples_per_second": 1.964,
|
162 |
+
"eval_steps_per_second": 0.2,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.51,
|
167 |
+
"learning_rate": 1.0505050505050507e-05,
|
168 |
+
"loss": 1.6057,
|
169 |
+
"step": 240
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 0.51,
|
173 |
+
"eval_loss": 1.594172716140747,
|
174 |
+
"eval_runtime": 200.1045,
|
175 |
+
"eval_samples_per_second": 1.964,
|
176 |
+
"eval_steps_per_second": 0.2,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.55,
|
181 |
+
"learning_rate": 9.696969696969698e-06,
|
182 |
+
"loss": 1.6175,
|
183 |
+
"step": 260
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.55,
|
187 |
+
"eval_loss": 1.591786503791809,
|
188 |
+
"eval_runtime": 200.1191,
|
189 |
+
"eval_samples_per_second": 1.964,
|
190 |
+
"eval_steps_per_second": 0.2,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.59,
|
195 |
+
"learning_rate": 8.888888888888888e-06,
|
196 |
+
"loss": 1.604,
|
197 |
+
"step": 280
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"epoch": 0.59,
|
201 |
+
"eval_loss": 1.59005606174469,
|
202 |
+
"eval_runtime": 200.0537,
|
203 |
+
"eval_samples_per_second": 1.964,
|
204 |
+
"eval_steps_per_second": 0.2,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.63,
|
209 |
+
"learning_rate": 8.08080808080808e-06,
|
210 |
+
"loss": 1.6115,
|
211 |
+
"step": 300
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 0.63,
|
215 |
+
"eval_loss": 1.5883697271347046,
|
216 |
+
"eval_runtime": 200.1226,
|
217 |
+
"eval_samples_per_second": 1.964,
|
218 |
+
"eval_steps_per_second": 0.2,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.68,
|
223 |
+
"learning_rate": 7.272727272727273e-06,
|
224 |
+
"loss": 1.5942,
|
225 |
+
"step": 320
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.68,
|
229 |
+
"eval_loss": 1.5865776538848877,
|
230 |
+
"eval_runtime": 200.0942,
|
231 |
+
"eval_samples_per_second": 1.964,
|
232 |
+
"eval_steps_per_second": 0.2,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.72,
|
237 |
+
"learning_rate": 6.464646464646466e-06,
|
238 |
+
"loss": 1.587,
|
239 |
+
"step": 340
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 0.72,
|
243 |
+
"eval_loss": 1.5847071409225464,
|
244 |
+
"eval_runtime": 200.1145,
|
245 |
+
"eval_samples_per_second": 1.964,
|
246 |
+
"eval_steps_per_second": 0.2,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.76,
|
251 |
+
"learning_rate": 5.656565656565657e-06,
|
252 |
+
"loss": 1.5937,
|
253 |
+
"step": 360
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 0.76,
|
257 |
+
"eval_loss": 1.5834985971450806,
|
258 |
+
"eval_runtime": 200.0727,
|
259 |
+
"eval_samples_per_second": 1.964,
|
260 |
+
"eval_steps_per_second": 0.2,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.8,
|
265 |
+
"learning_rate": 4.848484848484849e-06,
|
266 |
+
"loss": 1.5836,
|
267 |
+
"step": 380
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.8,
|
271 |
+
"eval_loss": 1.5821855068206787,
|
272 |
+
"eval_runtime": 200.0752,
|
273 |
+
"eval_samples_per_second": 1.964,
|
274 |
+
"eval_steps_per_second": 0.2,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.84,
|
279 |
+
"learning_rate": 4.04040404040404e-06,
|
280 |
+
"loss": 1.6018,
|
281 |
+
"step": 400
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 0.84,
|
285 |
+
"eval_loss": 1.5811065435409546,
|
286 |
+
"eval_runtime": 200.0657,
|
287 |
+
"eval_samples_per_second": 1.964,
|
288 |
+
"eval_steps_per_second": 0.2,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.89,
|
293 |
+
"learning_rate": 3.232323232323233e-06,
|
294 |
+
"loss": 1.612,
|
295 |
+
"step": 420
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"epoch": 0.89,
|
299 |
+
"eval_loss": 1.580207347869873,
|
300 |
+
"eval_runtime": 200.0806,
|
301 |
+
"eval_samples_per_second": 1.964,
|
302 |
+
"eval_steps_per_second": 0.2,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.93,
|
307 |
+
"learning_rate": 2.4242424242424244e-06,
|
308 |
+
"loss": 1.6067,
|
309 |
+
"step": 440
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.93,
|
313 |
+
"eval_loss": 1.5794427394866943,
|
314 |
+
"eval_runtime": 200.0838,
|
315 |
+
"eval_samples_per_second": 1.964,
|
316 |
+
"eval_steps_per_second": 0.2,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.97,
|
321 |
+
"learning_rate": 1.6161616161616164e-06,
|
322 |
+
"loss": 1.6014,
|
323 |
+
"step": 460
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 0.97,
|
327 |
+
"eval_loss": 1.5789347887039185,
|
328 |
+
"eval_runtime": 200.1151,
|
329 |
+
"eval_samples_per_second": 1.964,
|
330 |
+
"eval_steps_per_second": 0.2,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 1.01,
|
335 |
+
"learning_rate": 8.080808080808082e-07,
|
336 |
+
"loss": 1.5994,
|
337 |
+
"step": 480
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"epoch": 1.01,
|
341 |
+
"eval_loss": 1.5785064697265625,
|
342 |
+
"eval_runtime": 200.1139,
|
343 |
+
"eval_samples_per_second": 1.964,
|
344 |
+
"eval_steps_per_second": 0.2,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 1.06,
|
349 |
+
"learning_rate": 0.0,
|
350 |
+
"loss": 1.5745,
|
351 |
+
"step": 500
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 1.06,
|
355 |
+
"eval_loss": 1.5784260034561157,
|
356 |
+
"eval_runtime": 200.0898,
|
357 |
+
"eval_samples_per_second": 1.964,
|
358 |
+
"eval_steps_per_second": 0.2,
|
359 |
+
"step": 500
|
360 |
+
}
|
361 |
+
],
|
362 |
+
"logging_steps": 20,
|
363 |
+
"max_steps": 500,
|
364 |
+
"num_train_epochs": 2,
|
365 |
+
"save_steps": 20,
|
366 |
+
"total_flos": 3.504605136766894e+17,
|
367 |
+
"trial_name": null,
|
368 |
+
"trial_params": null
|
369 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:678c767a2f603867aeb9f44e665d0e3bbd1388dc7078c44783ce4dfb54f21e92
|
3 |
+
size 4027
|