ppo-LunarLander-v2 / config.json
qxakshat's picture
Upload PPO LunarLander-v2 trained agent
328dedb
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f20bc431b40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f20bc431bd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f20bc431c60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f20bc431cf0>", "_build": "<function ActorCriticPolicy._build at 0x7f20bc431d80>", "forward": "<function ActorCriticPolicy.forward at 0x7f20bc431e10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f20bc431ea0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f20bc431f30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f20bc431fc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f20bc432050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f20bc4320e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f20bc432170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f20bc42e840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677871549213475656, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL25lby9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxTL2hvbWUvbmVvL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKo5kT4wHv8+zBuEvjr6tb692oY9+RoFvgAAAAAAAAAAADAcO/csTz70vIu94G5kvo0EDr1me628AAAAAAAAAACt8Xg+P+vgPiZ+d74ENoO+H7PTvI0GijsAAAAAAAAAAFp8yT32RD26dnE0OITeHzP629K5Lj5VtwAAAAAAAIA/5kIivcNBbLoWlZg77SxUOCddRzuVMBi4AACAPwAAgD/adrS9LhyIPbZn2Lx06Tq+CS8qPBBkEL0AAAAAAAAAAFp8Cb7XZBG7I6g/OSe4NTbpUoc8uk5puAAAgD8AAIA/Wso5vvnNTD4YjVs+goSWvrSi6TxKjRk6AAAAAAAAAADmEW+9nQ6DPg5WDDyMpFu+YVEJO9oXtr0AAAAAAAAAAOb9Bb1Bmbw9FoKDPYMZSb6myxs8XdpVPQAAAAAAAAAAWhGvPYpUoD7eHvC9FFp9vg2rRjwW7wu6AAAAAAAAAACahcw8Hw3MuRMAcjrNcB6z/8tAuzutj7kAAIA/AACAP2a3ozzD2Xa6W/1TMyxtILAWOQE5DgrOswAAgD8AAIA/APubvY9iC7pVP345WusKNe/r0jvf5pS4AAAAAAAAgD8ziBI9rAOXP0swET4dmh6/AsCnPUGwvD0AAAAAAAAAAJMpQr5o/aW8+CCAu9+E7bmOeRU+zlrAOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIH6D7cuYibUCUhpRSlIwBbJRNPAGMAXSUR0CUC2FQVKwqdX2UKGgGaAloD0MIGHeDaK0nb0CUhpRSlGgVTbgBaBZHQJQNiQ0XP7h1fZQoaAZoCWgPQwgsvMtFPBlyQJSGlFKUaBVNTwFoFkdAlBFeyAxzrHV9lChoBmgJaA9DCNMzvcSYRXFAlIaUUpRoFU2xAWgWR0CUEl+RYA80dX2UKGgGaAloD0MIrTWU2svIc0CUhpRSlGgVTXABaBZHQJQTlMEidJ91fZQoaAZoCWgPQwgq5Eo9C51xQJSGlFKUaBVN0gFoFkdAlBV2f5DZ13V9lChoBmgJaA9DCGwFTUuseFVAlIaUUpRoFUunaBZHQJQZA7ihnJ11fZQoaAZoCWgPQwgmVkYjH8RvQJSGlFKUaBVNVwFoFkdAlBp2GRFI/nV9lChoBmgJaA9DCDARb52/l3BAlIaUUpRoFU0lAWgWR0CUGvO4oZyddX2UKGgGaAloD0MI8L4qFyqccECUhpRSlGgVTY8BaBZHQJQb8vboKUp1fZQoaAZoCWgPQwh7ouvCj8JwQJSGlFKUaBVNlAFoFkdAlBwhas6q83V9lChoBmgJaA9DCFBWDFcH4XFAlIaUUpRoFU3HAWgWR0CUHCDEFW4mdX2UKGgGaAloD0MIz4O7s3Y6WECUhpRSlGgVTegDaBZHQJQcVTGYKIB1fZQoaAZoCWgPQwjS/gdY631wQJSGlFKUaBVNPgJoFkdAlBxwbuMMqnV9lChoBmgJaA9DCNDWwcFeAmRAlIaUUpRoFU3oA2gWR0CUPZ+H8CPqdX2UKGgGaAloD0MICwithy+3bkCUhpRSlGgVTVADaBZHQJQ9p6F/QSl1fZQoaAZoCWgPQwhzSkBMQkJwQJSGlFKUaBVNtgFoFkdAlD68vIwM6XV9lChoBmgJaA9DCGlTdY8shHBAlIaUUpRoFU3KAWgWR0CUPsOe8PFvdX2UKGgGaAloD0MIqP+s+XGsYECUhpRSlGgVTegDaBZHQJRALD0lJH11fZQoaAZoCWgPQwj2Yign2o1zQJSGlFKUaBVNiAFoFkdAlEItdu5z53V9lChoBmgJaA9DCJIGt7WFOmxAlIaUUpRoFU0kAWgWR0CUQ/KQJXyRdX2UKGgGaAloD0MI5pDUQgkUcUCUhpRSlGgVTXQBaBZHQJREJc3VCol1fZQoaAZoCWgPQwiOsn4z8T5xQJSGlFKUaBVNDwFoFkdAlEW1l9SdfHV9lChoBmgJaA9DCPUu3o8bpXFAlIaUUpRoFU0/AWgWR0CURlPhhpg1dX2UKGgGaAloD0MI7gc8MIBEbkCUhpRSlGgVTRUBaBZHQJRGXiOvMbF1fZQoaAZoCWgPQwj59NiWQUtxQJSGlFKUaBVNNwFoFkdAlEeiPMjeK3V9lChoBmgJaA9DCBo1XyUf3m9AlIaUUpRoFU1ZAWgWR0CUR864Ds+ndX2UKGgGaAloD0MIKJ1IMFUzc0CUhpRSlGgVTSQBaBZHQJRH1/z8P4F1fZQoaAZoCWgPQwgUdlH0gN9yQJSGlFKUaBVN9QFoFkdAlEfht52Qn3V9lChoBmgJaA9DCAZlGk3uHXNAlIaUUpRoFU2GAWgWR0CUShyxRl6JdX2UKGgGaAloD0MI1qwzvi8fcUCUhpRSlGgVTU8BaBZHQJRKy26TW5J1fZQoaAZoCWgPQwin7PSDOmlwQJSGlFKUaBVNggFoFkdAlEtEG7jDK3V9lChoBmgJaA9DCCvCTUZV4nJAlIaUUpRoFU0EAWgWR0CUTdpgCwKTdX2UKGgGaAloD0MIa0dxjjocc0CUhpRSlGgVS/xoFkdAlE8zLW7OFHV9lChoBmgJaA9DCGTL8nVZfnNAlIaUUpRoFUv3aBZHQJRPlPLxI8R1fZQoaAZoCWgPQwiILT2a6mtvQJSGlFKUaBVNpAFoFkdAlE//lEJBxHV9lChoBmgJaA9DCK6cvTMayXBAlIaUUpRoFU1CAWgWR0CUUIZnctXgdX2UKGgGaAloD0MItwvNdZoUcECUhpRSlGgVTQQBaBZHQJRRS/i5uqF1fZQoaAZoCWgPQwgEAp1JW9NwQJSGlFKUaBVNOwFoFkdAlFPSLQ5WBHV9lChoBmgJaA9DCHlA2ZTrVnFAlIaUUpRoFU1KAWgWR0CUVGRLbpNcdX2UKGgGaAloD0MIkXwlkJJlbUCUhpRSlGgVTVQBaBZHQJRU3EUCaJB1fZQoaAZoCWgPQwj44SAhyqlwQJSGlFKUaBVNHQFoFkdAlFU0XcgyM3V9lChoBmgJaA9DCGK6EKs/n3BAlIaUUpRoFU2HAWgWR0CUVVkPMB6sdX2UKGgGaAloD0MIzAwbZf2FcECUhpRSlGgVTUACaBZHQJRY747A+IN1fZQoaAZoCWgPQwiPOc/YVxxwQJSGlFKUaBVNZgFoFkdAlFlwAyVObnV9lChoBmgJaA9DCCHOwwlMxnFAlIaUUpRoFU0dAWgWR0CUWxp7CzkZdX2UKGgGaAloD0MI2o0+5gOpckCUhpRSlGgVTRMBaBZHQJRch5C4SYh1fZQoaAZoCWgPQwhbsirCTa9wQJSGlFKUaBVNPAFoFkdAlFzW4NI9T3V9lChoBmgJaA9DCDoHz4QmKXFAlIaUUpRoFU1YAWgWR0CUXTVM23rldX2UKGgGaAloD0MIqi11kBcKckCUhpRSlGgVTUQBaBZHQJRds8cMmWt1fZQoaAZoCWgPQwhpVUs6iqxwQJSGlFKUaBVN2wFoFkdAlF20dRzij3V9lChoBmgJaA9DCNAqM6U1znBAlIaUUpRoFUv3aBZHQJReSxB3Roh1fZQoaAZoCWgPQwgr2bERCAxwQJSGlFKUaBVNFAFoFkdAlF7UpRXOnnV9lChoBmgJaA9DCFd8Q+EzmHFAlIaUUpRoFU0hAWgWR0CUYI47Rv3rdX2UKGgGaAloD0MIhqktdVBbcECUhpRSlGgVTeUBaBZHQJRg6Za3Zwp1fZQoaAZoCWgPQwgDJnDrbvtdQJSGlFKUaBVN6ANoFkdAlGHdmUW2w3V9lChoBmgJaA9DCNy93CeHw3JAlIaUUpRoFU2BAWgWR0CUg9GyX2M9dX2UKGgGaAloD0MIM05DVOHvXUCUhpRSlGgVTegDaBZHQJSETeP7vXt1fZQoaAZoCWgPQwjsia4LP6NwQJSGlFKUaBVNPwFoFkdAlISWVu76HnV9lChoBmgJaA9DCHMPCd97x2pAlIaUUpRoFU1eAWgWR0CUhgEM9bHIdX2UKGgGaAloD0MILh9JSU92ckCUhpRSlGgVTQQBaBZHQJSHMFiay8l1fZQoaAZoCWgPQwg2BTI7i+huQJSGlFKUaBVNFgFoFkdAlIc48yN4q3V9lChoBmgJaA9DCOKS407pjnFAlIaUUpRoFU0rAWgWR0CUh4YHxBmgdX2UKGgGaAloD0MIoiQk0rYcb0CUhpRSlGgVTU8BaBZHQJSIM1k1/Dt1fZQoaAZoCWgPQwgDBd7JJ7JuQJSGlFKUaBVNTwFoFkdAlIk3aFmFrXV9lChoBmgJaA9DCOl942tPpnBAlIaUUpRoFUv/aBZHQJSJVy4nWrh1fZQoaAZoCWgPQwiQL6GCgwBxQJSGlFKUaBVNFgFoFkdAlIp+BczIm3V9lChoBmgJaA9DCDxM++b+s3JAlIaUUpRoFU0WAWgWR0CUi1lijL0SdX2UKGgGaAloD0MIZJEm3kE4cECUhpRSlGgVTasBaBZHQJSLkXoC+111fZQoaAZoCWgPQwhZ94+F6AhsQJSGlFKUaBVNBAFoFkdAlIy7bQC0W3V9lChoBmgJaA9DCBdJu9FHm2xAlIaUUpRoFU0eAWgWR0CUjn79Q40edX2UKGgGaAloD0MI9iaG5KR3cUCUhpRSlGgVTToCaBZHQJSPPKs+3Yt1fZQoaAZoCWgPQwioctpTMhFwQJSGlFKUaBVNIQFoFkdAlJBLLIPsiXV9lChoBmgJaA9DCFJflnZqGXJAlIaUUpRoFU0FAWgWR0CUkIGlANXpdX2UKGgGaAloD0MI0hitoyo0cECUhpRSlGgVS+1oFkdAlJM1EE1VHXV9lChoBmgJaA9DCMgG0sWmCnJAlIaUUpRoFU0xAWgWR0CUk0d2Pkq+dX2UKGgGaAloD0MIuCOcFny5cUCUhpRSlGgVTSABaBZHQJSTsT101ZV1fZQoaAZoCWgPQwhpqbwdYWxuQJSGlFKUaBVNIgFoFkdAlJY19BrvcHV9lChoBmgJaA9DCOhM2lTdcm9AlIaUUpRoFU0gAWgWR0CUlmVXV9WqdX2UKGgGaAloD0MIHVcjuxIpc0CUhpRSlGgVTTwBaBZHQJSYsHcDbJx1fZQoaAZoCWgPQwjzHJHvUplyQJSGlFKUaBVN6AFoFkdAlJk3VkMCtHV9lChoBmgJaA9DCOeKUkJwS3JAlIaUUpRoFUvsaBZHQJSZltUGVzJ1fZQoaAZoCWgPQwiN1eb/VeZiQJSGlFKUaBVN6ANoFkdAlJnYGpuMuXV9lChoBmgJaA9DCAg6WtUSJnJAlIaUUpRoFU06AWgWR0CUmoF+NLlFdX2UKGgGaAloD0MIYrt7gC6TcECUhpRSlGgVTRsBaBZHQJSbEqd6LO11fZQoaAZoCWgPQwglICbhgshxQJSGlFKUaBVNHAJoFkdAlJtqFyq+8HV9lChoBmgJaA9DCAeZZOTs83BAlIaUUpRoFU1xAWgWR0CUnSvAoG6gdX2UKGgGaAloD0MIfepYpbSHcECUhpRSlGgVTRMBaBZHQJSeAzFdcB51fZQoaAZoCWgPQwjZlgFnKTNxQJSGlFKUaBVNIwFoFkdAlJ4imQ8wH3V9lChoBmgJaA9DCI1/n3EhPHFAlIaUUpRoFU1XAmgWR0CUn0Z5zHS4dX2UKGgGaAloD0MIvOgrSHM7cECUhpRSlGgVTSQBaBZHQJSg+oIfKZF1fZQoaAZoCWgPQwg164zvSxxxQJSGlFKUaBVL7WgWR0CUoioo/iYLdX2UKGgGaAloD0MIwM+4cKBgckCUhpRSlGgVS/5oFkdAlKKV/Ue+23V9lChoBmgJaA9DCNy5MNILvmJAlIaUUpRoFU3oA2gWR0CUorz5oGpudX2UKGgGaAloD0MIrHE2HQGgT0CUhpRSlGgVS95oFkdAlKNJnYg7o3V9lChoBmgJaA9DCKsJou6DynFAlIaUUpRoFU0fAWgWR0CUo3Er5IpZdX2UKGgGaAloD0MImbnA5bHjcECUhpRSlGgVTTEBaBZHQJSjmIHkcS51fZQoaAZoCWgPQwikb9I0aDZyQJSGlFKUaBVL+WgWR0CUo9jtXxOMdX2UKGgGaAloD0MIJoxmZXtcbECUhpRSlGgVTX4BaBZHQJSkA11nuiN1fZQoaAZoCWgPQwjLZ3keXFJzQJSGlFKUaBVNawFoFkdAlKc9JnQIEHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUy9ob21lL25lby9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxTL2hvbWUvbmVvL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.10.8", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.2", "Gym": "0.21.0"}}