VILID / x1_ITF_SkinDiffDetail_Lite_v1.yml
raannakasturi's picture
Upload 2 files
7122534
raw
history blame
7.86 kB
# python train.py -opt options/sr/x1_ITF_SkinDiffDetail_Lite_v1.yml
name: x1_ITF_SkinDiffDetail_Lite_v1
# the name that defines the experiment and the directory that will be created in the experiments directory.
# name: debug_001_template # use the "debug" or "debug_nochkp" prefix in the name to run a test session and check everything is working. Does validation and state saving every 8 iterations. Remove "debug" to run the real training session.
use_tb_logger: false
# wheter to enable Tensorboard logging or not. Output will be saved in: traiNNer/tb_logger/
model: sr
# the model training strategy to be used. Depends on the type of model, from: https://github.com/victorca25/traiNNer/tree/master/codes/models
scale: 1 # the scale factor that will be used for training for super-resolution cases. Default is "1".
gpu_ids: [0] # the list of `CUDA_VISIBLE_DEVICES` that will be used during training, ie. for two GPUs, use [0, 1]. The batch size should be a multiple of the number of 'gpu_ids', since images will be distributed from the batch to each GPU.
use_amp: true # select to use PyTorch's Automatic Mixed Precision package to train in low-precision FP16 mode (lowers VRAM requirements).
use_swa: false # select to use Stochastic Weight Averaging
use_cem: false # select to use CEM during training. https://github.com/victorca25/traiNNer/tree/master/codes/models/modules/architectures/CEM
# Dataset options:
datasets: # configure the datasets
train: # the stage the dataset will be used for (training)
name: x1_ITF_SkinDiffDetail_Lite_v1 # the name of your dataset (only informative)
mode: aligned
# dataset mode: https://github.com/victorca25/traiNNer/tree/master/codes/data
dataroot_HR: [
#'K:/TRAINING/data/Skin_Diff2Nrml/hr_clean_tiles/'
'../datasets/Skin_DiffDetail/hr/'
]
dataroot_LR: [
#'K:/TRAINING/data/Skin_Diff2Nrml/lr_clean_tiles/'
'../datasets/Skin_DiffDetail/lr_soft/'
] # low resolution images
subset_file: null
use_shuffle: true
znorm: false
n_workers: 8
batch_size: 12
virtual_batch_size: 12
preprocess: crop
crop_size: 64
image_channels: 3
# Color space conversion
# color: 'y'
# color_LR: 'y'
# color_HR: 'y'
# LR and HR modifiers.
# aug_downscale: 0.2
# shape_change: reshape_lr
# Enable random downscaling of HR images (will fix LR pair to correct size)
hr_downscale: true
hr_downscale_types: [0, 3]
hr_downscale_amount: [1, 2, 4]
# #pre_crop: true
# Presets and on the fly (OTF) augmentations
#augs_strategy: combo
#add_blur_preset: custom_blur
#add_resize_preset: custom_resize
#add_noise_preset: custom_noise
#aug_downscale: 0.2
resize_strat: pre
# On the fly generation of LR:
# dataroot_kernels: 'KERNEL PATH !!!! CHANGE THIS OR COMMENT OUT'
#lr_downscale: false
#lr_downscale_types: ["linear", "bicubic", "nearest_aligned"]
# Rotations augmentations:
use_flip: true
use_rot: true
use_hrrot: true
# Noise and blur augmentations:
#lr_blur: true
#lr_blur_types: {sinc: 0.2, iso: 0.2, ansio2: 0.4, sinc2: 0.2, clean: 3}
#noise_data: 'K:/TRAINING/traiNNer/noise_patches/'
#lr_noise: true
#lr_noise_types: {camera: 0.1, jpeg: 0.8, clean: 3}
#lr_noise2: false
#lr_noise_types2: {jpeg: 1, webp: 0, clean: 2, camera: 2}
#hr_noise: false
#hr_noise_types: {gaussian: 1, clean: 4}
# Color augmentations
# lr_fringes: false
# lr_fringes_chance: 0.4
# auto_levels: HR
# rand_auto_levels: 0.7
#lr_unsharp_mask: true
#lr_rand_unsharp: 0.7
# hr_unsharp_mask: true
# hr_rand_unsharp: 1
# Augmentations for classification or (maybe) inpainting networks:
# lr_cutout: false
# lr_erasing: false
#val:
#name: val_set14_part
#mode: aligned
#dataroot_B: '../datasets/val/hr'
#dataroot_A: '../datasets/val/lr'
#znorm: false
# Color space conversion:
# color: 'y'
# color_LR: 'y'
# color_HR: 'y'
path:
root: '../'
pretrain_model_G: '../experiments/pretrained_models/1x_DIV2K-Lite_SpongeBC1-Lite_interp.pth'
# pretrain_model_D: 'K:/TRAINING/data/models/x1_ITF_SkinDiff2Nrm_Lite_v3_208500_D.pth'
resume_state: '../experiments/x1_ITF_SkinDiffDetail_Lite_v1/training_state/latest.state'
# Generator options:
network_G: esrgan-lite # configurations for the Generator network
# Discriminator options:
network_D:
# ESRGAN (default)| PPON:
which_model_D: multiscale # discriminator_vgg_128 | discriminator_vgg | discriminator_vgg_128_fea (feature extraction) | patchgan | multiscale
norm_type: batch
act_type: leakyrelu
mode: CNA # CNA | NAC
nf: 32
in_nc: 3
nlayer: 3 # only for patchgan and multiscale
num_D: 3 # only for multiscale
train:
# Optimizer options:
optim_G: adamp
optim_D: adamp
# Schedulers options:
lr_scheme: MultiStepLR
lr_steps_rel: [50000, 100000, 200000, 300000]
lr_gamma: 0.5
# For SWA scheduler
swa_start_iter_rel: 0.05
swa_lr: 1e-4
swa_anneal_epochs: 10
swa_anneal_strategy: "cos"
# Losses:
pixel_criterion: l1 # pixel (content) loss
pixel_weight: 0.05
feature_criterion: l1 # feature loss (VGG feature network)
feature_weight: 0.3
cx_type: contextual # contextual loss
cx_weight: 1
cx_vgg_layers: {conv_3_2: 1, conv_4_2: 1}
#hfen_criterion: l1 # hfen
#hfen_weight: 1e-6
#grad_type: grad-4d-l1 # image gradient loss
#grad_weight: 4e-1
# tv_type: normal # total variation
# tv_weight: 1e-5
# tv_norm: 1
ssim_type: ssim # structural similarity
ssim_weight: 0.05
lpips_weight: 0.25 # [.25] perceptual loss
lpips_type: net-lin
lpips_net: squeeze
# Experimental losses
# spl_type: spl # spatial profile loss
# spl_weight: 0.1
#of_type: overflow # overflow loss
#of_weight: 0.1
# range_weight: 1 # range loss
# fft_type: fft # FFT loss
# fft_weight: 0.2 #[.2]
color_criterion: color-l1cosinesim # color consistency loss
color_weight: 0.1
# avg_criterion: avg-l1 # averaging downscale loss
# avg_weight: 5
# ms_criterion: multiscale-l1 # multi-scale pixel loss
# ms_weight: 1e-2
#fdpl_type: fdpl # frequency domain-based perceptual loss
#fdpl_weight: 1e-3
# Adversarial loss:
#gan_type: vanilla
#gan_weight: 4e-3
# freeze_loc: 4
# For wgan-gp:
# D_update_ratio: 1
# D_init_iters: 0
# gp_weigth: 10
# Feature matching (if using the discriminator_vgg_128_fea or discriminator_vgg_fea):
# gan_featmaps: true
# dis_feature_criterion: cb # discriminator feature loss
# dis_feature_weight: 0.01
# For PPON:
# p1_losses: [pix]
# p2_losses: [pix-multiscale, ms-ssim]
# p3_losses: [fea]
# ppon_stages: [1000, 2000]
# Differentiable Augmentation for Data-Efficient GAN Training
# diffaug: true
# dapolicy: 'color,transl_zoom,flip,rotate,cutout'
# Batch (Mixup) augmentations
#mixup: false
#mixopts: [blend, rgb, mixup, cutmix, cutmixup] # , "cutout", "cutblur"]
#mixprob: [1.0, 1.0, 1.0, 1.0, 1.0] #, 1.0, 1.0]
#mixalpha: [0.6, 1.0, 1.2, 0.7, 0.7] #, 0.001, 0.7]
#aux_mixprob: 1.0
#aux_mixalpha: 1.2
# mix_p: 1.2
# Frequency Separator
#fs: true
#lpf_type: average
#hpf_type: average
# Other training options:
manual_seed: 0
niter: 250000
# warmup_iter: -1
#val_freq: 5e3
# overwrite_val_imgs: true
# val_comparison: true
# metrics: 'psnr,ssim,lpips'
#grad_clip: auto
#grad_clip_value: 0.1 # "auto"
logger:
print_freq: 50
save_checkpoint_freq: 500
overwrite_chkp: false