rafay commited on
Commit
28f370c
1 Parent(s): ed9537c

upload first PPO MlpPolicy model on LunarLander-v2

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 261.37 +/- 20.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f59ec506dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f59ec506e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f59ec506ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f59ec506f80>", "_build": "<function ActorCriticPolicy._build at 0x7f59ec507010>", "forward": "<function ActorCriticPolicy.forward at 0x7f59ec5070a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f59ec507130>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f59ec5071c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f59ec507250>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f59ec5072e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f59ec507370>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f59ec507400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f59ec510580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685292106158565246, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADJjbyMy6U/+cQpvtOcEL+3Leu8UyuGvQAAAAAAAAAA5sGdvbCSmz4TnPE9YpauvsXu2Tln7AE+AAAAAAAAAAB6Kym+wxUvvFU94rqWuB65xX2ZPXj6AjoAAIA/AACAP2ac3LzWNYs/+m/YvWnNQb8bz1i96HMTvQAAAAAAAAAAJp+kvXtMkLoW7gE0LEQzLRVZALvhJ6azAACAPwAAgD8zTHE+qzx5PyAN6T1tvAO/U27IPmgmmr4AAAAAAAAAAECw972DXAS8rS00PpDxwrwQ2Pq95sgJPgAAgD8AAIA/ptbEPc99nj8m74I+2Q4ovzJGoT1Uo6w9AAAAAAAAAAD6osK+ueZoPxN0fr6mJiO/DYy2vjesnbwAAAAAAAAAAM0OzbyPJjK6sesitc1UPC3UTme6SIVXNAAAgD8AAIA/M21LPJAUqz92TUQ+0fcdv2+DejvFGJI9AAAAAAAAAADGvxo+z/0RvGJbQbsCXiQ540B+vbXxdjoAAIA/AACAP2CEEj4FyN679tBPO51OnbkVnEi9LT+EugAAgD8AAIA/De24PY9GeLoJ2om8EiUqswytM7dYzVszAACAPwAAgD+gMzO+VASWvI/2P7vNuci5vDsIPs3JoToAAIA/AACAPwAr7b29Mjc8Ra87PmLOMb5TQKs82Z4KPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGDMcENe+qMAWyUS8qMAXSUR0CZEXshgVoIdX2UKGgGR0BfTVlCkXUIaAdN6ANoCEdAmRJi5Zr57HV9lChoBkdAccrzFdcB2mgHS85oCEdAmRLyLuQZGnV9lChoBkdActXdSVGCqmgHS8doCEdAmRLu7HyVfXV9lChoBkdAcp247zTWoWgHS75oCEdAmRMmGqPwNXV9lChoBkdAcOFmR/3Fk2gHS9VoCEdAmROs9nscAHV9lChoBkdAckLbmlqJuWgHS+VoCEdAmRSs3dbgTHV9lChoBkdAct3wOOKfnWgHS7hoCEdAmRSrlNlAeXV9lChoBkdAZLFvy9VWCGgHTegDaAhHQJkUu4Wk8A91fZQoaAZHQHBdHA/LTx5oB0u0aAhHQJkUxfb9If91fZQoaAZHQG/aZ7XxvvVoB0vSaAhHQJkU41FYuCh1fZQoaAZHQHCRPL5hz/9oB0vqaAhHQJkVheVs1sN1fZQoaAZHQHL58QZn+Q5oB0vTaAhHQJkVswrUb1h1fZQoaAZHQHG0yEg4ffZoB0uoaAhHQJkVz9LpRoB1fZQoaAZHQHL3i0Sh8IBoB0u+aAhHQJkV94wAU+N1fZQoaAZHQHEX8N6PbPBoB0vMaAhHQJkYBG0/nnx1fZQoaAZHQG+B3I+4b0hoB0vIaAhHQJkYHpGFzuF1fZQoaAZHQHHH1h5PdmBoB0v3aAhHQJkYlHkLhJl1fZQoaAZHQHMKVsDW9UVoB01JAWgIR0CZGMwIMSbpdX2UKGgGR0BxDryoXKr8aAdL2mgIR0CZGR28qWkadX2UKGgGR0BxOFeMQ2/BaAdLwmgIR0CZGYD3/PxAdX2UKGgGR0Bvssm+j/MoaAdLz2gIR0CZGbxwAEMcdX2UKGgGR0BwxE93bEgoaAdLrWgIR0CZGfQdS2pidX2UKGgGR0BxXm1KGtZFaAdL22gIR0CZGgxjJ+2FdX2UKGgGR0ByrzWxyGSIaAdL5GgIR0CZGjtXPqs2dX2UKGgGR0BwJx1hb4ahaAdLumgIR0CZGlxdIGyHdX2UKGgGR0ByYsKeCkGiaAdL5GgIR0CZGxKDTSb6dX2UKGgGR0Byc2HXVbzLaAdL32gIR0CZG2uDzyz5dX2UKGgGR0Bws/6l+EytaAdLtGgIR0CZHPsMiKR/dX2UKGgGR0Bv/2lfqoqDaAdL02gIR0CZHUDWK/EgdX2UKGgGR0BycV7LMcIaaAdLt2gIR0CZHl6u4gA7dX2UKGgGR0BukCJ9AooeaAdLw2gIR0CZHm0x/NJOdX2UKGgGR0BxzBooNNJwaAdLvWgIR0CZHsokRjBmdX2UKGgGR0BxaVuCPIXCaAdL5mgIR0CZHvfeUILPdX2UKGgGR0BxkbLhaTwEaAdL0WgIR0CZH3th/iHZdX2UKGgGR0BxexF4LThHaAdL0mgIR0CZH73QD3dsdX2UKGgGR0BwJsMa0hNeaAdNFgFoCEdAmR/3oTwlSnV9lChoBkdAbsQqCHymRGgHS8poCEdAmSBxhttQ9HV9lChoBkdAcqgArxy4nWgHTQYBaAhHQJkhSB/Zuht1fZQoaAZHQHF/edCmdiFoB0vSaAhHQJkiwwh4dIZ1fZQoaAZHQGEJpRGc4HZoB03oA2gIR0CZI/bNr0rcdX2UKGgGR0BzPzesPrfMaAdLz2gIR0CZJB5ooNNKdX2UKGgGR0BxkrW5H3DfaAdL92gIR0CZJCj0th/idX2UKGgGR0BxeLukUKzBaAdL12gIR0CZJGNiYsundX2UKGgGR0Bzrelk6LflaAdLxmgIR0CZJHQkX1rZdX2UKGgGR0ByB/qB3A2yaAdL3WgIR0CZJONcGC7LdX2UKGgGR0Bvw9r2xptaaAdLyWgIR0CZJTJO32EkdX2UKGgGR0BwOrUF0PpZaAdLpGgIR0CZJbZML4N7dX2UKGgGR0Bw7ml41P30aAdL/mgIR0CZJs9Ujs2OdX2UKGgGR0BxEfBacI7eaAdLq2gIR0CZKTBF/hESdX2UKGgGR0BKfAaNuLrHaAdLu2gIR0CZKU0qH447dX2UKGgGR0ByIcUJv5xjaAdL6mgIR0CZKVYZl4C7dX2UKGgGR0BwAX1Gsmv4aAdL0GgIR0CZKb/nnuAqdX2UKGgGR0BxtL5aePJaaAdL5GgIR0CZKsotthuwdX2UKGgGR0BtP78aXKKYaAdLy2gIR0CZKwHRCx/vdX2UKGgGR0By5MOUdJaraAdL82gIR0CZK9e3x4IKdX2UKGgGR0BxQs1m8M/haAdNFgFoCEdAmSwQhGH58HV9lChoBkdAZESQDFId2mgHTegDaAhHQJkt8HKOktV1fZQoaAZHQHA3fw/gR9RoB0u3aAhHQJku/WDpTuR1fZQoaAZHQG4AU4rBj4JoB0u4aAhHQJkve3azu4R1fZQoaAZHQF/7lk6Lfk5oB03oA2gIR0CZMEo0ygwodX2UKGgGR0BwPwGlhw2maAdLumgIR0CZMLE2pAD8dX2UKGgGR0BxCDuQZGayaAdL82gIR0CZMMTh5xBFdX2UKGgGR0BzUgA7xNItaAdLwmgIR0CZMfbGWD6FdX2UKGgGR0BxEOCSRr8BaAdLwmgIR0CZMi8BdUsGdX2UKGgGR0ByYRN21UlzaAdL72gIR0CZMoMkyDZldX2UKGgGR0BjbaDoQnQZaAdN6ANoCEdAmTR4I0IkaHV9lChoBkdAcPJgyM1jzGgHS/5oCEdAmTcAAdXDFnV9lChoBkdAcdRFR51Ng2gHTR4BaAhHQJk2/y+YdAB1fZQoaAZHQG9rd3KSxJNoB0vGaAhHQJk2/e2uxKR1fZQoaAZHQHBiU4FRpDhoB0vRaAhHQJk3P/Nqxkd1fZQoaAZHQHKD83uNPxhoB00LAWgIR0CZN+Ccf/3ndX2UKGgGR0BkI/P1L8JlaAdN6ANoCEdAmTjARsdkrnV9lChoBkdAcC2XQdCE6GgHS9toCEdAmTjgxrSE13V9lChoBkdAcahKE384xWgHS/NoCEdAmTrU8V58jXV9lChoBkdAcNzxZdOZcGgHS7hoCEdAmTsEUTL4e3V9lChoBkdAcT1uGKyfMGgHS7xoCEdAmT8CI55qunV9lChoBkdAb6A3AmAskWgHS75oCEdAmT8e27Wd3HV9lChoBkdAY9r+az/p+2gHTegDaAhHQJlABbnoxHp1fZQoaAZHQG7wH7P6bfBoB0vXaAhHQJlAwYfnwG51fZQoaAZHQGS8y+HrQgNoB03oA2gIR0CZQbZxJd0JdX2UKGgGR0Bx1HaEi+tbaAdL3GgIR0CZQ2WBSUC8dX2UKGgGR0BwNkB2fTTfaAdLy2gIR0CZRPAdn004dX2UKGgGR0Bwe53s5XEJaAdL42gIR0CZRoucMEzPdX2UKGgGR0BxLNAQg9vCaAdLtWgIR0CZSJO2y9mIdX2UKGgGR0BwaXfEXLvDaAdLxGgIR0CZSpaLXL/0dX2UKGgGR0BvpMq6OHWSaAdNYwFoCEdAmUs3BHkLhXV9lChoBkdAckRz8P4EfWgHS+FoCEdAmUs3/Lkjo3V9lChoBkdAYAaYqoZQ52gHTegDaAhHQJlMT60pmVZ1fZQoaAZHQHHakxZdOZdoB0vZaAhHQJlMYfNiYsx1fZQoaAZHQHDjX7+DOC5oB0vLaAhHQJlMlV4oqkN1fZQoaAZHQGLsdo371qZoB03oA2gIR0CZTY5c1O0tdX2UKGgGR0ByG6l7+kxiaAdL22gIR0CZTgiRW912dX2UKGgGR0BwbUc4o7V8aAdL32gIR0CZTvx46fapdX2UKGgGR0Bhhj/2kBS2aAdN6ANoCEdAmU/y7oSteXV9lChoBkdAcc99QGfPHGgHS/JoCEdAmVBRciW3SnV9lChoBkdAcfaaDf3vhWgHS+hoCEdAmVEMAWBSUHV9lChoBkdAcKVLwnYxtmgHS8loCEdAmVF2E9Mbm3V9lChoBkdAcLHlvIfbK2gHS7RoCEdAmVG+2JBPbnV9lChoBkdAcJYizLOiWWgHS9hoCEdAmVHcWO6un3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo_mlp_LunaLander_v01.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5c0b9764ef8839abdd3012145f7b29fa576ce3eb0c7c3b9135809c58a3cd6d6
3
+ size 146650
ppo_mlp_LunaLander_v01/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo_mlp_LunaLander_v01/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f59ec506dd0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f59ec506e60>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f59ec506ef0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f59ec506f80>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f59ec507010>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f59ec5070a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f59ec507130>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f59ec5071c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f59ec507250>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f59ec5072e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f59ec507370>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f59ec507400>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f59ec510580>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1685292106158565246,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADJjbyMy6U/+cQpvtOcEL+3Leu8UyuGvQAAAAAAAAAA5sGdvbCSmz4TnPE9YpauvsXu2Tln7AE+AAAAAAAAAAB6Kym+wxUvvFU94rqWuB65xX2ZPXj6AjoAAIA/AACAP2ac3LzWNYs/+m/YvWnNQb8bz1i96HMTvQAAAAAAAAAAJp+kvXtMkLoW7gE0LEQzLRVZALvhJ6azAACAPwAAgD8zTHE+qzx5PyAN6T1tvAO/U27IPmgmmr4AAAAAAAAAAECw972DXAS8rS00PpDxwrwQ2Pq95sgJPgAAgD8AAIA/ptbEPc99nj8m74I+2Q4ovzJGoT1Uo6w9AAAAAAAAAAD6osK+ueZoPxN0fr6mJiO/DYy2vjesnbwAAAAAAAAAAM0OzbyPJjK6sesitc1UPC3UTme6SIVXNAAAgD8AAIA/M21LPJAUqz92TUQ+0fcdv2+DejvFGJI9AAAAAAAAAADGvxo+z/0RvGJbQbsCXiQ540B+vbXxdjoAAIA/AACAP2CEEj4FyN679tBPO51OnbkVnEi9LT+EugAAgD8AAIA/De24PY9GeLoJ2om8EiUqswytM7dYzVszAACAPwAAgD+gMzO+VASWvI/2P7vNuci5vDsIPs3JoToAAIA/AACAPwAr7b29Mjc8Ra87PmLOMb5TQKs82Z4KPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV8wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGDMcENe+qMAWyUS8qMAXSUR0CZEXshgVoIdX2UKGgGR0BfTVlCkXUIaAdN6ANoCEdAmRJi5Zr57HV9lChoBkdAccrzFdcB2mgHS85oCEdAmRLyLuQZGnV9lChoBkdActXdSVGCqmgHS8doCEdAmRLu7HyVfXV9lChoBkdAcp247zTWoWgHS75oCEdAmRMmGqPwNXV9lChoBkdAcOFmR/3Fk2gHS9VoCEdAmROs9nscAHV9lChoBkdAckLbmlqJuWgHS+VoCEdAmRSs3dbgTHV9lChoBkdAct3wOOKfnWgHS7hoCEdAmRSrlNlAeXV9lChoBkdAZLFvy9VWCGgHTegDaAhHQJkUu4Wk8A91fZQoaAZHQHBdHA/LTx5oB0u0aAhHQJkUxfb9If91fZQoaAZHQG/aZ7XxvvVoB0vSaAhHQJkU41FYuCh1fZQoaAZHQHCRPL5hz/9oB0vqaAhHQJkVheVs1sN1fZQoaAZHQHL58QZn+Q5oB0vTaAhHQJkVswrUb1h1fZQoaAZHQHG0yEg4ffZoB0uoaAhHQJkVz9LpRoB1fZQoaAZHQHL3i0Sh8IBoB0u+aAhHQJkV94wAU+N1fZQoaAZHQHEX8N6PbPBoB0vMaAhHQJkYBG0/nnx1fZQoaAZHQG+B3I+4b0hoB0vIaAhHQJkYHpGFzuF1fZQoaAZHQHHH1h5PdmBoB0v3aAhHQJkYlHkLhJl1fZQoaAZHQHMKVsDW9UVoB01JAWgIR0CZGMwIMSbpdX2UKGgGR0BxDryoXKr8aAdL2mgIR0CZGR28qWkadX2UKGgGR0BxOFeMQ2/BaAdLwmgIR0CZGYD3/PxAdX2UKGgGR0Bvssm+j/MoaAdLz2gIR0CZGbxwAEMcdX2UKGgGR0BwxE93bEgoaAdLrWgIR0CZGfQdS2pidX2UKGgGR0BxXm1KGtZFaAdL22gIR0CZGgxjJ+2FdX2UKGgGR0ByrzWxyGSIaAdL5GgIR0CZGjtXPqs2dX2UKGgGR0BwJx1hb4ahaAdLumgIR0CZGlxdIGyHdX2UKGgGR0ByYsKeCkGiaAdL5GgIR0CZGxKDTSb6dX2UKGgGR0Byc2HXVbzLaAdL32gIR0CZG2uDzyz5dX2UKGgGR0Bws/6l+EytaAdLtGgIR0CZHPsMiKR/dX2UKGgGR0Bv/2lfqoqDaAdL02gIR0CZHUDWK/EgdX2UKGgGR0BycV7LMcIaaAdLt2gIR0CZHl6u4gA7dX2UKGgGR0BukCJ9AooeaAdLw2gIR0CZHm0x/NJOdX2UKGgGR0BxzBooNNJwaAdLvWgIR0CZHsokRjBmdX2UKGgGR0BxaVuCPIXCaAdL5mgIR0CZHvfeUILPdX2UKGgGR0BxkbLhaTwEaAdL0WgIR0CZH3th/iHZdX2UKGgGR0BxexF4LThHaAdL0mgIR0CZH73QD3dsdX2UKGgGR0BwJsMa0hNeaAdNFgFoCEdAmR/3oTwlSnV9lChoBkdAbsQqCHymRGgHS8poCEdAmSBxhttQ9HV9lChoBkdAcqgArxy4nWgHTQYBaAhHQJkhSB/Zuht1fZQoaAZHQHF/edCmdiFoB0vSaAhHQJkiwwh4dIZ1fZQoaAZHQGEJpRGc4HZoB03oA2gIR0CZI/bNr0rcdX2UKGgGR0BzPzesPrfMaAdLz2gIR0CZJB5ooNNKdX2UKGgGR0BxkrW5H3DfaAdL92gIR0CZJCj0th/idX2UKGgGR0BxeLukUKzBaAdL12gIR0CZJGNiYsundX2UKGgGR0Bzrelk6LflaAdLxmgIR0CZJHQkX1rZdX2UKGgGR0ByB/qB3A2yaAdL3WgIR0CZJONcGC7LdX2UKGgGR0Bvw9r2xptaaAdLyWgIR0CZJTJO32EkdX2UKGgGR0BwOrUF0PpZaAdLpGgIR0CZJbZML4N7dX2UKGgGR0Bw7ml41P30aAdL/mgIR0CZJs9Ujs2OdX2UKGgGR0BxEfBacI7eaAdLq2gIR0CZKTBF/hESdX2UKGgGR0BKfAaNuLrHaAdLu2gIR0CZKU0qH447dX2UKGgGR0ByIcUJv5xjaAdL6mgIR0CZKVYZl4C7dX2UKGgGR0BwAX1Gsmv4aAdL0GgIR0CZKb/nnuAqdX2UKGgGR0BxtL5aePJaaAdL5GgIR0CZKsotthuwdX2UKGgGR0BtP78aXKKYaAdLy2gIR0CZKwHRCx/vdX2UKGgGR0By5MOUdJaraAdL82gIR0CZK9e3x4IKdX2UKGgGR0BxQs1m8M/haAdNFgFoCEdAmSwQhGH58HV9lChoBkdAZESQDFId2mgHTegDaAhHQJkt8HKOktV1fZQoaAZHQHA3fw/gR9RoB0u3aAhHQJku/WDpTuR1fZQoaAZHQG4AU4rBj4JoB0u4aAhHQJkve3azu4R1fZQoaAZHQF/7lk6Lfk5oB03oA2gIR0CZMEo0ygwodX2UKGgGR0BwPwGlhw2maAdLumgIR0CZMLE2pAD8dX2UKGgGR0BxCDuQZGayaAdL82gIR0CZMMTh5xBFdX2UKGgGR0BzUgA7xNItaAdLwmgIR0CZMfbGWD6FdX2UKGgGR0BxEOCSRr8BaAdLwmgIR0CZMi8BdUsGdX2UKGgGR0ByYRN21UlzaAdL72gIR0CZMoMkyDZldX2UKGgGR0BjbaDoQnQZaAdN6ANoCEdAmTR4I0IkaHV9lChoBkdAcPJgyM1jzGgHS/5oCEdAmTcAAdXDFnV9lChoBkdAcdRFR51Ng2gHTR4BaAhHQJk2/y+YdAB1fZQoaAZHQG9rd3KSxJNoB0vGaAhHQJk2/e2uxKR1fZQoaAZHQHBiU4FRpDhoB0vRaAhHQJk3P/Nqxkd1fZQoaAZHQHKD83uNPxhoB00LAWgIR0CZN+Ccf/3ndX2UKGgGR0BkI/P1L8JlaAdN6ANoCEdAmTjARsdkrnV9lChoBkdAcC2XQdCE6GgHS9toCEdAmTjgxrSE13V9lChoBkdAcahKE384xWgHS/NoCEdAmTrU8V58jXV9lChoBkdAcNzxZdOZcGgHS7hoCEdAmTsEUTL4e3V9lChoBkdAcT1uGKyfMGgHS7xoCEdAmT8CI55qunV9lChoBkdAb6A3AmAskWgHS75oCEdAmT8e27Wd3HV9lChoBkdAY9r+az/p+2gHTegDaAhHQJlABbnoxHp1fZQoaAZHQG7wH7P6bfBoB0vXaAhHQJlAwYfnwG51fZQoaAZHQGS8y+HrQgNoB03oA2gIR0CZQbZxJd0JdX2UKGgGR0Bx1HaEi+tbaAdL3GgIR0CZQ2WBSUC8dX2UKGgGR0BwNkB2fTTfaAdLy2gIR0CZRPAdn004dX2UKGgGR0Bwe53s5XEJaAdL42gIR0CZRoucMEzPdX2UKGgGR0BxLNAQg9vCaAdLtWgIR0CZSJO2y9mIdX2UKGgGR0BwaXfEXLvDaAdLxGgIR0CZSpaLXL/0dX2UKGgGR0BvpMq6OHWSaAdNYwFoCEdAmUs3BHkLhXV9lChoBkdAckRz8P4EfWgHS+FoCEdAmUs3/Lkjo3V9lChoBkdAYAaYqoZQ52gHTegDaAhHQJlMT60pmVZ1fZQoaAZHQHHakxZdOZdoB0vZaAhHQJlMYfNiYsx1fZQoaAZHQHDjX7+DOC5oB0vLaAhHQJlMlV4oqkN1fZQoaAZHQGLsdo371qZoB03oA2gIR0CZTY5c1O0tdX2UKGgGR0ByG6l7+kxiaAdL22gIR0CZTgiRW912dX2UKGgGR0BwbUc4o7V8aAdL32gIR0CZTvx46fapdX2UKGgGR0Bhhj/2kBS2aAdN6ANoCEdAmU/y7oSteXV9lChoBkdAcc99QGfPHGgHS/JoCEdAmVBRciW3SnV9lChoBkdAcfaaDf3vhWgHS+hoCEdAmVEMAWBSUHV9lChoBkdAcKVLwnYxtmgHS8loCEdAmVF2E9Mbm3V9lChoBkdAcLHlvIfbK2gHS7RoCEdAmVG+2JBPbnV9lChoBkdAcJYizLOiWWgHS9hoCEdAmVHcWO6un3VlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo_mlp_LunaLander_v01/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95bb639c911a673bbcbd7303adb331e323cbb964e1c3613dab86ad7ee583d2d6
3
+ size 87929
ppo_mlp_LunaLander_v01/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56ca4b0dac576472cb3a1fad8fbb8f9feada052b2bc5afcb6bc7b4c00a8d7158
3
+ size 43329
ppo_mlp_LunaLander_v01/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_mlp_LunaLander_v01/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (175 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.36691576996935, "std_reward": 20.055465386112974, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-28T17:15:31.052240"}