upload first PPO MlpPolicy model on LunarLander-v2
Browse files- README.md +37 -0
- config.json +1 -0
- ppo_mlp_LunaLander_v01.zip +3 -0
- ppo_mlp_LunaLander_v01/_stable_baselines3_version +1 -0
- ppo_mlp_LunaLander_v01/data +99 -0
- ppo_mlp_LunaLander_v01/policy.optimizer.pth +3 -0
- ppo_mlp_LunaLander_v01/policy.pth +3 -0
- ppo_mlp_LunaLander_v01/pytorch_variables.pth +3 -0
- ppo_mlp_LunaLander_v01/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 261.37 +/- 20.06
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f59ec506dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f59ec506e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f59ec506ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f59ec506f80>", "_build": "<function ActorCriticPolicy._build at 0x7f59ec507010>", "forward": "<function ActorCriticPolicy.forward at 0x7f59ec5070a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f59ec507130>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f59ec5071c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f59ec507250>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f59ec5072e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f59ec507370>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f59ec507400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f59ec510580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685292106158565246, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADJjbyMy6U/+cQpvtOcEL+3Leu8UyuGvQAAAAAAAAAA5sGdvbCSmz4TnPE9YpauvsXu2Tln7AE+AAAAAAAAAAB6Kym+wxUvvFU94rqWuB65xX2ZPXj6AjoAAIA/AACAP2ac3LzWNYs/+m/YvWnNQb8bz1i96HMTvQAAAAAAAAAAJp+kvXtMkLoW7gE0LEQzLRVZALvhJ6azAACAPwAAgD8zTHE+qzx5PyAN6T1tvAO/U27IPmgmmr4AAAAAAAAAAECw972DXAS8rS00PpDxwrwQ2Pq95sgJPgAAgD8AAIA/ptbEPc99nj8m74I+2Q4ovzJGoT1Uo6w9AAAAAAAAAAD6osK+ueZoPxN0fr6mJiO/DYy2vjesnbwAAAAAAAAAAM0OzbyPJjK6sesitc1UPC3UTme6SIVXNAAAgD8AAIA/M21LPJAUqz92TUQ+0fcdv2+DejvFGJI9AAAAAAAAAADGvxo+z/0RvGJbQbsCXiQ540B+vbXxdjoAAIA/AACAP2CEEj4FyN679tBPO51OnbkVnEi9LT+EugAAgD8AAIA/De24PY9GeLoJ2om8EiUqswytM7dYzVszAACAPwAAgD+gMzO+VASWvI/2P7vNuci5vDsIPs3JoToAAIA/AACAPwAr7b29Mjc8Ra87PmLOMb5TQKs82Z4KPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGDMcENe+qMAWyUS8qMAXSUR0CZEXshgVoIdX2UKGgGR0BfTVlCkXUIaAdN6ANoCEdAmRJi5Zr57HV9lChoBkdAccrzFdcB2mgHS85oCEdAmRLyLuQZGnV9lChoBkdActXdSVGCqmgHS8doCEdAmRLu7HyVfXV9lChoBkdAcp247zTWoWgHS75oCEdAmRMmGqPwNXV9lChoBkdAcOFmR/3Fk2gHS9VoCEdAmROs9nscAHV9lChoBkdAckLbmlqJuWgHS+VoCEdAmRSs3dbgTHV9lChoBkdAct3wOOKfnWgHS7hoCEdAmRSrlNlAeXV9lChoBkdAZLFvy9VWCGgHTegDaAhHQJkUu4Wk8A91fZQoaAZHQHBdHA/LTx5oB0u0aAhHQJkUxfb9If91fZQoaAZHQG/aZ7XxvvVoB0vSaAhHQJkU41FYuCh1fZQoaAZHQHCRPL5hz/9oB0vqaAhHQJkVheVs1sN1fZQoaAZHQHL58QZn+Q5oB0vTaAhHQJkVswrUb1h1fZQoaAZHQHG0yEg4ffZoB0uoaAhHQJkVz9LpRoB1fZQoaAZHQHL3i0Sh8IBoB0u+aAhHQJkV94wAU+N1fZQoaAZHQHEX8N6PbPBoB0vMaAhHQJkYBG0/nnx1fZQoaAZHQG+B3I+4b0hoB0vIaAhHQJkYHpGFzuF1fZQoaAZHQHHH1h5PdmBoB0v3aAhHQJkYlHkLhJl1fZQoaAZHQHMKVsDW9UVoB01JAWgIR0CZGMwIMSbpdX2UKGgGR0BxDryoXKr8aAdL2mgIR0CZGR28qWkadX2UKGgGR0BxOFeMQ2/BaAdLwmgIR0CZGYD3/PxAdX2UKGgGR0Bvssm+j/MoaAdLz2gIR0CZGbxwAEMcdX2UKGgGR0BwxE93bEgoaAdLrWgIR0CZGfQdS2pidX2UKGgGR0BxXm1KGtZFaAdL22gIR0CZGgxjJ+2FdX2UKGgGR0ByrzWxyGSIaAdL5GgIR0CZGjtXPqs2dX2UKGgGR0BwJx1hb4ahaAdLumgIR0CZGlxdIGyHdX2UKGgGR0ByYsKeCkGiaAdL5GgIR0CZGxKDTSb6dX2UKGgGR0Byc2HXVbzLaAdL32gIR0CZG2uDzyz5dX2UKGgGR0Bws/6l+EytaAdLtGgIR0CZHPsMiKR/dX2UKGgGR0Bv/2lfqoqDaAdL02gIR0CZHUDWK/EgdX2UKGgGR0BycV7LMcIaaAdLt2gIR0CZHl6u4gA7dX2UKGgGR0BukCJ9AooeaAdLw2gIR0CZHm0x/NJOdX2UKGgGR0BxzBooNNJwaAdLvWgIR0CZHsokRjBmdX2UKGgGR0BxaVuCPIXCaAdL5mgIR0CZHvfeUILPdX2UKGgGR0BxkbLhaTwEaAdL0WgIR0CZH3th/iHZdX2UKGgGR0BxexF4LThHaAdL0mgIR0CZH73QD3dsdX2UKGgGR0BwJsMa0hNeaAdNFgFoCEdAmR/3oTwlSnV9lChoBkdAbsQqCHymRGgHS8poCEdAmSBxhttQ9HV9lChoBkdAcqgArxy4nWgHTQYBaAhHQJkhSB/Zuht1fZQoaAZHQHF/edCmdiFoB0vSaAhHQJkiwwh4dIZ1fZQoaAZHQGEJpRGc4HZoB03oA2gIR0CZI/bNr0rcdX2UKGgGR0BzPzesPrfMaAdLz2gIR0CZJB5ooNNKdX2UKGgGR0BxkrW5H3DfaAdL92gIR0CZJCj0th/idX2UKGgGR0BxeLukUKzBaAdL12gIR0CZJGNiYsundX2UKGgGR0Bzrelk6LflaAdLxmgIR0CZJHQkX1rZdX2UKGgGR0ByB/qB3A2yaAdL3WgIR0CZJONcGC7LdX2UKGgGR0Bvw9r2xptaaAdLyWgIR0CZJTJO32EkdX2UKGgGR0BwOrUF0PpZaAdLpGgIR0CZJbZML4N7dX2UKGgGR0Bw7ml41P30aAdL/mgIR0CZJs9Ujs2OdX2UKGgGR0BxEfBacI7eaAdLq2gIR0CZKTBF/hESdX2UKGgGR0BKfAaNuLrHaAdLu2gIR0CZKU0qH447dX2UKGgGR0ByIcUJv5xjaAdL6mgIR0CZKVYZl4C7dX2UKGgGR0BwAX1Gsmv4aAdL0GgIR0CZKb/nnuAqdX2UKGgGR0BxtL5aePJaaAdL5GgIR0CZKsotthuwdX2UKGgGR0BtP78aXKKYaAdLy2gIR0CZKwHRCx/vdX2UKGgGR0By5MOUdJaraAdL82gIR0CZK9e3x4IKdX2UKGgGR0BxQs1m8M/haAdNFgFoCEdAmSwQhGH58HV9lChoBkdAZESQDFId2mgHTegDaAhHQJkt8HKOktV1fZQoaAZHQHA3fw/gR9RoB0u3aAhHQJku/WDpTuR1fZQoaAZHQG4AU4rBj4JoB0u4aAhHQJkve3azu4R1fZQoaAZHQF/7lk6Lfk5oB03oA2gIR0CZMEo0ygwodX2UKGgGR0BwPwGlhw2maAdLumgIR0CZMLE2pAD8dX2UKGgGR0BxCDuQZGayaAdL82gIR0CZMMTh5xBFdX2UKGgGR0BzUgA7xNItaAdLwmgIR0CZMfbGWD6FdX2UKGgGR0BxEOCSRr8BaAdLwmgIR0CZMi8BdUsGdX2UKGgGR0ByYRN21UlzaAdL72gIR0CZMoMkyDZldX2UKGgGR0BjbaDoQnQZaAdN6ANoCEdAmTR4I0IkaHV9lChoBkdAcPJgyM1jzGgHS/5oCEdAmTcAAdXDFnV9lChoBkdAcdRFR51Ng2gHTR4BaAhHQJk2/y+YdAB1fZQoaAZHQG9rd3KSxJNoB0vGaAhHQJk2/e2uxKR1fZQoaAZHQHBiU4FRpDhoB0vRaAhHQJk3P/Nqxkd1fZQoaAZHQHKD83uNPxhoB00LAWgIR0CZN+Ccf/3ndX2UKGgGR0BkI/P1L8JlaAdN6ANoCEdAmTjARsdkrnV9lChoBkdAcC2XQdCE6GgHS9toCEdAmTjgxrSE13V9lChoBkdAcahKE384xWgHS/NoCEdAmTrU8V58jXV9lChoBkdAcNzxZdOZcGgHS7hoCEdAmTsEUTL4e3V9lChoBkdAcT1uGKyfMGgHS7xoCEdAmT8CI55qunV9lChoBkdAb6A3AmAskWgHS75oCEdAmT8e27Wd3HV9lChoBkdAY9r+az/p+2gHTegDaAhHQJlABbnoxHp1fZQoaAZHQG7wH7P6bfBoB0vXaAhHQJlAwYfnwG51fZQoaAZHQGS8y+HrQgNoB03oA2gIR0CZQbZxJd0JdX2UKGgGR0Bx1HaEi+tbaAdL3GgIR0CZQ2WBSUC8dX2UKGgGR0BwNkB2fTTfaAdLy2gIR0CZRPAdn004dX2UKGgGR0Bwe53s5XEJaAdL42gIR0CZRoucMEzPdX2UKGgGR0BxLNAQg9vCaAdLtWgIR0CZSJO2y9mIdX2UKGgGR0BwaXfEXLvDaAdLxGgIR0CZSpaLXL/0dX2UKGgGR0BvpMq6OHWSaAdNYwFoCEdAmUs3BHkLhXV9lChoBkdAckRz8P4EfWgHS+FoCEdAmUs3/Lkjo3V9lChoBkdAYAaYqoZQ52gHTegDaAhHQJlMT60pmVZ1fZQoaAZHQHHakxZdOZdoB0vZaAhHQJlMYfNiYsx1fZQoaAZHQHDjX7+DOC5oB0vLaAhHQJlMlV4oqkN1fZQoaAZHQGLsdo371qZoB03oA2gIR0CZTY5c1O0tdX2UKGgGR0ByG6l7+kxiaAdL22gIR0CZTgiRW912dX2UKGgGR0BwbUc4o7V8aAdL32gIR0CZTvx46fapdX2UKGgGR0Bhhj/2kBS2aAdN6ANoCEdAmU/y7oSteXV9lChoBkdAcc99QGfPHGgHS/JoCEdAmVBRciW3SnV9lChoBkdAcfaaDf3vhWgHS+hoCEdAmVEMAWBSUHV9lChoBkdAcKVLwnYxtmgHS8loCEdAmVF2E9Mbm3V9lChoBkdAcLHlvIfbK2gHS7RoCEdAmVG+2JBPbnV9lChoBkdAcJYizLOiWWgHS9hoCEdAmVHcWO6un3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo_mlp_LunaLander_v01.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5c0b9764ef8839abdd3012145f7b29fa576ce3eb0c7c3b9135809c58a3cd6d6
|
3 |
+
size 146650
|
ppo_mlp_LunaLander_v01/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo_mlp_LunaLander_v01/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f59ec506dd0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f59ec506e60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f59ec506ef0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f59ec506f80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f59ec507010>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f59ec5070a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f59ec507130>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f59ec5071c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f59ec507250>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f59ec5072e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f59ec507370>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f59ec507400>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f59ec510580>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1685292106158565246,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAADJjbyMy6U/+cQpvtOcEL+3Leu8UyuGvQAAAAAAAAAA5sGdvbCSmz4TnPE9YpauvsXu2Tln7AE+AAAAAAAAAAB6Kym+wxUvvFU94rqWuB65xX2ZPXj6AjoAAIA/AACAP2ac3LzWNYs/+m/YvWnNQb8bz1i96HMTvQAAAAAAAAAAJp+kvXtMkLoW7gE0LEQzLRVZALvhJ6azAACAPwAAgD8zTHE+qzx5PyAN6T1tvAO/U27IPmgmmr4AAAAAAAAAAECw972DXAS8rS00PpDxwrwQ2Pq95sgJPgAAgD8AAIA/ptbEPc99nj8m74I+2Q4ovzJGoT1Uo6w9AAAAAAAAAAD6osK+ueZoPxN0fr6mJiO/DYy2vjesnbwAAAAAAAAAAM0OzbyPJjK6sesitc1UPC3UTme6SIVXNAAAgD8AAIA/M21LPJAUqz92TUQ+0fcdv2+DejvFGJI9AAAAAAAAAADGvxo+z/0RvGJbQbsCXiQ540B+vbXxdjoAAIA/AACAP2CEEj4FyN679tBPO51OnbkVnEi9LT+EugAAgD8AAIA/De24PY9GeLoJ2om8EiUqswytM7dYzVszAACAPwAAgD+gMzO+VASWvI/2P7vNuci5vDsIPs3JoToAAIA/AACAPwAr7b29Mjc8Ra87PmLOMb5TQKs82Z4KPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV8wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGDMcENe+qMAWyUS8qMAXSUR0CZEXshgVoIdX2UKGgGR0BfTVlCkXUIaAdN6ANoCEdAmRJi5Zr57HV9lChoBkdAccrzFdcB2mgHS85oCEdAmRLyLuQZGnV9lChoBkdActXdSVGCqmgHS8doCEdAmRLu7HyVfXV9lChoBkdAcp247zTWoWgHS75oCEdAmRMmGqPwNXV9lChoBkdAcOFmR/3Fk2gHS9VoCEdAmROs9nscAHV9lChoBkdAckLbmlqJuWgHS+VoCEdAmRSs3dbgTHV9lChoBkdAct3wOOKfnWgHS7hoCEdAmRSrlNlAeXV9lChoBkdAZLFvy9VWCGgHTegDaAhHQJkUu4Wk8A91fZQoaAZHQHBdHA/LTx5oB0u0aAhHQJkUxfb9If91fZQoaAZHQG/aZ7XxvvVoB0vSaAhHQJkU41FYuCh1fZQoaAZHQHCRPL5hz/9oB0vqaAhHQJkVheVs1sN1fZQoaAZHQHL58QZn+Q5oB0vTaAhHQJkVswrUb1h1fZQoaAZHQHG0yEg4ffZoB0uoaAhHQJkVz9LpRoB1fZQoaAZHQHL3i0Sh8IBoB0u+aAhHQJkV94wAU+N1fZQoaAZHQHEX8N6PbPBoB0vMaAhHQJkYBG0/nnx1fZQoaAZHQG+B3I+4b0hoB0vIaAhHQJkYHpGFzuF1fZQoaAZHQHHH1h5PdmBoB0v3aAhHQJkYlHkLhJl1fZQoaAZHQHMKVsDW9UVoB01JAWgIR0CZGMwIMSbpdX2UKGgGR0BxDryoXKr8aAdL2mgIR0CZGR28qWkadX2UKGgGR0BxOFeMQ2/BaAdLwmgIR0CZGYD3/PxAdX2UKGgGR0Bvssm+j/MoaAdLz2gIR0CZGbxwAEMcdX2UKGgGR0BwxE93bEgoaAdLrWgIR0CZGfQdS2pidX2UKGgGR0BxXm1KGtZFaAdL22gIR0CZGgxjJ+2FdX2UKGgGR0ByrzWxyGSIaAdL5GgIR0CZGjtXPqs2dX2UKGgGR0BwJx1hb4ahaAdLumgIR0CZGlxdIGyHdX2UKGgGR0ByYsKeCkGiaAdL5GgIR0CZGxKDTSb6dX2UKGgGR0Byc2HXVbzLaAdL32gIR0CZG2uDzyz5dX2UKGgGR0Bws/6l+EytaAdLtGgIR0CZHPsMiKR/dX2UKGgGR0Bv/2lfqoqDaAdL02gIR0CZHUDWK/EgdX2UKGgGR0BycV7LMcIaaAdLt2gIR0CZHl6u4gA7dX2UKGgGR0BukCJ9AooeaAdLw2gIR0CZHm0x/NJOdX2UKGgGR0BxzBooNNJwaAdLvWgIR0CZHsokRjBmdX2UKGgGR0BxaVuCPIXCaAdL5mgIR0CZHvfeUILPdX2UKGgGR0BxkbLhaTwEaAdL0WgIR0CZH3th/iHZdX2UKGgGR0BxexF4LThHaAdL0mgIR0CZH73QD3dsdX2UKGgGR0BwJsMa0hNeaAdNFgFoCEdAmR/3oTwlSnV9lChoBkdAbsQqCHymRGgHS8poCEdAmSBxhttQ9HV9lChoBkdAcqgArxy4nWgHTQYBaAhHQJkhSB/Zuht1fZQoaAZHQHF/edCmdiFoB0vSaAhHQJkiwwh4dIZ1fZQoaAZHQGEJpRGc4HZoB03oA2gIR0CZI/bNr0rcdX2UKGgGR0BzPzesPrfMaAdLz2gIR0CZJB5ooNNKdX2UKGgGR0BxkrW5H3DfaAdL92gIR0CZJCj0th/idX2UKGgGR0BxeLukUKzBaAdL12gIR0CZJGNiYsundX2UKGgGR0Bzrelk6LflaAdLxmgIR0CZJHQkX1rZdX2UKGgGR0ByB/qB3A2yaAdL3WgIR0CZJONcGC7LdX2UKGgGR0Bvw9r2xptaaAdLyWgIR0CZJTJO32EkdX2UKGgGR0BwOrUF0PpZaAdLpGgIR0CZJbZML4N7dX2UKGgGR0Bw7ml41P30aAdL/mgIR0CZJs9Ujs2OdX2UKGgGR0BxEfBacI7eaAdLq2gIR0CZKTBF/hESdX2UKGgGR0BKfAaNuLrHaAdLu2gIR0CZKU0qH447dX2UKGgGR0ByIcUJv5xjaAdL6mgIR0CZKVYZl4C7dX2UKGgGR0BwAX1Gsmv4aAdL0GgIR0CZKb/nnuAqdX2UKGgGR0BxtL5aePJaaAdL5GgIR0CZKsotthuwdX2UKGgGR0BtP78aXKKYaAdLy2gIR0CZKwHRCx/vdX2UKGgGR0By5MOUdJaraAdL82gIR0CZK9e3x4IKdX2UKGgGR0BxQs1m8M/haAdNFgFoCEdAmSwQhGH58HV9lChoBkdAZESQDFId2mgHTegDaAhHQJkt8HKOktV1fZQoaAZHQHA3fw/gR9RoB0u3aAhHQJku/WDpTuR1fZQoaAZHQG4AU4rBj4JoB0u4aAhHQJkve3azu4R1fZQoaAZHQF/7lk6Lfk5oB03oA2gIR0CZMEo0ygwodX2UKGgGR0BwPwGlhw2maAdLumgIR0CZMLE2pAD8dX2UKGgGR0BxCDuQZGayaAdL82gIR0CZMMTh5xBFdX2UKGgGR0BzUgA7xNItaAdLwmgIR0CZMfbGWD6FdX2UKGgGR0BxEOCSRr8BaAdLwmgIR0CZMi8BdUsGdX2UKGgGR0ByYRN21UlzaAdL72gIR0CZMoMkyDZldX2UKGgGR0BjbaDoQnQZaAdN6ANoCEdAmTR4I0IkaHV9lChoBkdAcPJgyM1jzGgHS/5oCEdAmTcAAdXDFnV9lChoBkdAcdRFR51Ng2gHTR4BaAhHQJk2/y+YdAB1fZQoaAZHQG9rd3KSxJNoB0vGaAhHQJk2/e2uxKR1fZQoaAZHQHBiU4FRpDhoB0vRaAhHQJk3P/Nqxkd1fZQoaAZHQHKD83uNPxhoB00LAWgIR0CZN+Ccf/3ndX2UKGgGR0BkI/P1L8JlaAdN6ANoCEdAmTjARsdkrnV9lChoBkdAcC2XQdCE6GgHS9toCEdAmTjgxrSE13V9lChoBkdAcahKE384xWgHS/NoCEdAmTrU8V58jXV9lChoBkdAcNzxZdOZcGgHS7hoCEdAmTsEUTL4e3V9lChoBkdAcT1uGKyfMGgHS7xoCEdAmT8CI55qunV9lChoBkdAb6A3AmAskWgHS75oCEdAmT8e27Wd3HV9lChoBkdAY9r+az/p+2gHTegDaAhHQJlABbnoxHp1fZQoaAZHQG7wH7P6bfBoB0vXaAhHQJlAwYfnwG51fZQoaAZHQGS8y+HrQgNoB03oA2gIR0CZQbZxJd0JdX2UKGgGR0Bx1HaEi+tbaAdL3GgIR0CZQ2WBSUC8dX2UKGgGR0BwNkB2fTTfaAdLy2gIR0CZRPAdn004dX2UKGgGR0Bwe53s5XEJaAdL42gIR0CZRoucMEzPdX2UKGgGR0BxLNAQg9vCaAdLtWgIR0CZSJO2y9mIdX2UKGgGR0BwaXfEXLvDaAdLxGgIR0CZSpaLXL/0dX2UKGgGR0BvpMq6OHWSaAdNYwFoCEdAmUs3BHkLhXV9lChoBkdAckRz8P4EfWgHS+FoCEdAmUs3/Lkjo3V9lChoBkdAYAaYqoZQ52gHTegDaAhHQJlMT60pmVZ1fZQoaAZHQHHakxZdOZdoB0vZaAhHQJlMYfNiYsx1fZQoaAZHQHDjX7+DOC5oB0vLaAhHQJlMlV4oqkN1fZQoaAZHQGLsdo371qZoB03oA2gIR0CZTY5c1O0tdX2UKGgGR0ByG6l7+kxiaAdL22gIR0CZTgiRW912dX2UKGgGR0BwbUc4o7V8aAdL32gIR0CZTvx46fapdX2UKGgGR0Bhhj/2kBS2aAdN6ANoCEdAmU/y7oSteXV9lChoBkdAcc99QGfPHGgHS/JoCEdAmVBRciW3SnV9lChoBkdAcfaaDf3vhWgHS+hoCEdAmVEMAWBSUHV9lChoBkdAcKVLwnYxtmgHS8loCEdAmVF2E9Mbm3V9lChoBkdAcLHlvIfbK2gHS7RoCEdAmVG+2JBPbnV9lChoBkdAcJYizLOiWWgHS9hoCEdAmVHcWO6un3VlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo_mlp_LunaLander_v01/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95bb639c911a673bbcbd7303adb331e323cbb964e1c3613dab86ad7ee583d2d6
|
3 |
+
size 87929
|
ppo_mlp_LunaLander_v01/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56ca4b0dac576472cb3a1fad8fbb8f9feada052b2bc5afcb6bc7b4c00a8d7158
|
3 |
+
size 43329
|
ppo_mlp_LunaLander_v01/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_mlp_LunaLander_v01/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (175 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 261.36691576996935, "std_reward": 20.055465386112974, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-28T17:15:31.052240"}
|