--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch32-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: results results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.45625 --- # results This model is a fine-tuned version of [google/vit-base-patch32-224-in21k](https://huggingface.co/google/vit-base-patch32-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4692 - Accuracy: 0.4562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7426 | 1.0 | 40 | 1.4692 | 0.4562 | | 0.4647 | 2.0 | 80 | 1.5033 | 0.4313 | | 0.2527 | 3.0 | 120 | 1.5517 | 0.4813 | | 0.1551 | 4.0 | 160 | 1.6071 | 0.4688 | | 0.113 | 5.0 | 200 | 1.6474 | 0.475 | | 0.0914 | 6.0 | 240 | 1.6752 | 0.45 | | 0.0774 | 7.0 | 280 | 1.7003 | 0.45 | | 0.0698 | 8.0 | 320 | 1.7336 | 0.4437 | | 0.063 | 9.0 | 360 | 1.7595 | 0.45 | | 0.0583 | 10.0 | 400 | 1.7778 | 0.4437 | | 0.0551 | 11.0 | 440 | 1.7938 | 0.4375 | | 0.0531 | 12.0 | 480 | 1.8082 | 0.4375 | | 0.0509 | 13.0 | 520 | 1.8176 | 0.4437 | | 0.0499 | 14.0 | 560 | 1.8230 | 0.4375 | | 0.0494 | 15.0 | 600 | 1.8249 | 0.4375 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1 - Datasets 2.21.0 - Tokenizers 0.19.1