rafi138 commited on
Commit
950de1e
1 Parent(s): e59d6dc

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,279 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: Nur Digital Studio
12
+ - text: Sultanas Makeover And Training Center
13
+ - text: Kajol Lota Restaurant
14
+ - text: Loveria Cafe & Restaurant
15
+ - text: Robiul And Brothers Departmental Store
16
+ pipeline_tag: text-classification
17
+ inference: true
18
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
19
+ model-index:
20
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.48
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 17 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:----------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | Bank | <ul><li>'Ific Bank Limited Sadar'</li><li>'Uttara Bank Limited Patuakhali Sadar'</li><li>'Eastern Bank Limited Uttara Branch (EBL)'</li></ul> |
66
+ | Office | <ul><li>'Technometrics Limited - Banani Office'</li><li>'Land Survieur Vendor Office'</li><li>'Saint Maritn Travels'</li></ul> |
67
+ | Religious Place | <ul><li>'Summa Ajmeri Khaja Baba Khanka Sharif'</li><li>'Baytul Mukaddas Jame Masjid'</li><li>'Paharpur Masjid'</li></ul> |
68
+ | Education | <ul><li>'Shajalal Model Madrasa'</li><li>'Physics Private Care'</li><li>'Batikadanga Primar School'</li></ul> |
69
+ | Recreation | <ul><li>'Surjo Dighol Resort'</li><li>'Bangladesh National Monument (Sriti Soudho)'</li><li>'Eco Park Jamun'</li></ul> |
70
+ | Healthcare | <ul><li>'Nagar Shasthyo Bhaban'</li><li>'Laser Smile Dental Clinic'</li><li>'Haque Eye Care Centre'</li></ul> |
71
+ | Agricultural | <ul><li>'Fram'</li><li>'Fruit Garden'</li></ul> |
72
+ | Food | <ul><li>'Longhorn Steak & Pizza'</li><li>'Ghati Cha'</li><li>'Banaful And Con'</li></ul> |
73
+ | Construction | <ul><li>'Shahjalal Sanitary'</li><li>'Modern Hardware And Paint'</li><li>'KLH Hardware'</li></ul> |
74
+ | Industry | <ul><li>'Mka Enterprise'</li><li>'Firoz Indoor Fish Firm'</li><li>'Abdullah Industrial Park'</li></ul> |
75
+ | Government | <ul><li>'Upazila Ansar And VDP Karjalay'</li><li>'Bof Officers Mess'</li><li>'Saheber Bazar Post Office'</li></ul> |
76
+ | Transportation | <ul><li>'Cantonment Railway Station Dhaka'</li><li>'Mosharrof Counter'</li><li>'GR Transport Agency'</li></ul> |
77
+ | Shop | <ul><li>'Kajol Watch Service'</li><li>'Glamour Parlour'</li><li>'Ma Baba Workshop'</li></ul> |
78
+ | Residential | <ul><li>'Tri Noyon Villa'</li><li>'Mohammad Ali Sawdagar Colony'</li><li>'Afia Cottage'</li></ul> |
79
+ | Hotel | <ul><li>'Hotel Bondor Ga'</li><li>'Hotel Moon Moon Abashik'</li><li>'Warisan Residential Hotel'</li></ul> |
80
+ | Landmark | <ul><li>'Rampura Bazar Moar'</li><li>'Mohipal Square'</li></ul> |
81
+ | Commercial | <ul><li>'Mohammadpur Geneva Camp Kacha Bazar'</li><li>'Mohila College Bhaban'</li><li>'Singer Plus Mohammadpur'</li></ul> |
82
+
83
+ ## Evaluation
84
+
85
+ ### Metrics
86
+ | Label | Accuracy |
87
+ |:--------|:---------|
88
+ | **all** | 0.48 |
89
+
90
+ ## Uses
91
+
92
+ ### Direct Use for Inference
93
+
94
+ First install the SetFit library:
95
+
96
+ ```bash
97
+ pip install setfit
98
+ ```
99
+
100
+ Then you can load this model and run inference.
101
+
102
+ ```python
103
+ from setfit import SetFitModel
104
+
105
+ # Download from the 🤗 Hub
106
+ model = SetFitModel.from_pretrained("rafi138/setfit-paraphrase-mpnet-base-v2-type")
107
+ # Run inference
108
+ preds = model("Nur Digital Studio")
109
+ ```
110
+
111
+ <!--
112
+ ### Downstream Use
113
+
114
+ *List how someone could finetune this model on their own dataset.*
115
+ -->
116
+
117
+ <!--
118
+ ### Out-of-Scope Use
119
+
120
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
121
+ -->
122
+
123
+ <!--
124
+ ## Bias, Risks and Limitations
125
+
126
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
127
+ -->
128
+
129
+ <!--
130
+ ### Recommendations
131
+
132
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
133
+ -->
134
+
135
+ ## Training Details
136
+
137
+ ### Training Set Metrics
138
+ | Training set | Min | Median | Max |
139
+ |:-------------|:----|:-------|:----|
140
+ | Word count | 1 | 3.5254 | 7 |
141
+
142
+ | Label | Training Sample Count |
143
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------|
144
+ | ShopCommercialGovernmentHealthcareEducationFoodOfficeReligious PlaceBankTransportationConstructionIndustryResidentialLandmarkRecreationFuelHotelUtilityAgricultural | 0 |
145
+
146
+ ### Training Hyperparameters
147
+ - batch_size: (16, 16)
148
+ - num_epochs: (4, 4)
149
+ - max_steps: -1
150
+ - sampling_strategy: oversampling
151
+ - body_learning_rate: (2e-05, 1e-05)
152
+ - head_learning_rate: 0.01
153
+ - loss: CosineSimilarityLoss
154
+ - distance_metric: cosine_distance
155
+ - margin: 0.25
156
+ - end_to_end: False
157
+ - use_amp: False
158
+ - warmup_proportion: 0.1
159
+ - seed: 42
160
+ - eval_max_steps: -1
161
+ - load_best_model_at_end: True
162
+
163
+ ### Training Results
164
+ | Epoch | Step | Training Loss | Validation Loss |
165
+ |:-------:|:-------:|:-------------:|:---------------:|
166
+ | 0.0012 | 1 | 0.2662 | - |
167
+ | 0.0613 | 50 | 0.2335 | - |
168
+ | 0.1227 | 100 | 0.1324 | - |
169
+ | 0.1840 | 150 | 0.1617 | - |
170
+ | 0.2454 | 200 | 0.0733 | - |
171
+ | 0.3067 | 250 | 0.0743 | - |
172
+ | 0.3681 | 300 | 0.0186 | - |
173
+ | 0.4294 | 350 | 0.0103 | - |
174
+ | 0.4908 | 400 | 0.0214 | - |
175
+ | 0.5521 | 450 | 0.0042 | - |
176
+ | 0.6135 | 500 | 0.0062 | - |
177
+ | 0.6748 | 550 | 0.0027 | - |
178
+ | 0.7362 | 600 | 0.0021 | - |
179
+ | 0.7975 | 650 | 0.0014 | - |
180
+ | 0.8589 | 700 | 0.0016 | - |
181
+ | 0.9202 | 750 | 0.0059 | - |
182
+ | 0.9816 | 800 | 0.0009 | - |
183
+ | **1.0** | **815** | **-** | **0.2969** |
184
+ | 1.0429 | 850 | 0.0008 | - |
185
+ | 1.1043 | 900 | 0.0014 | - |
186
+ | 1.1656 | 950 | 0.0008 | - |
187
+ | 1.2270 | 1000 | 0.001 | - |
188
+ | 1.2883 | 1050 | 0.001 | - |
189
+ | 1.3497 | 1100 | 0.0017 | - |
190
+ | 1.4110 | 1150 | 0.0007 | - |
191
+ | 1.4724 | 1200 | 0.0006 | - |
192
+ | 1.5337 | 1250 | 0.0008 | - |
193
+ | 1.5951 | 1300 | 0.0006 | - |
194
+ | 1.6564 | 1350 | 0.0005 | - |
195
+ | 1.7178 | 1400 | 0.0005 | - |
196
+ | 1.7791 | 1450 | 0.001 | - |
197
+ | 1.8405 | 1500 | 0.0005 | - |
198
+ | 1.9018 | 1550 | 0.0006 | - |
199
+ | 1.9632 | 1600 | 0.0005 | - |
200
+ | 2.0 | 1630 | - | 0.3073 |
201
+ | 2.0245 | 1650 | 0.0007 | - |
202
+ | 2.0859 | 1700 | 0.0016 | - |
203
+ | 2.1472 | 1750 | 0.0006 | - |
204
+ | 2.2086 | 1800 | 0.0008 | - |
205
+ | 2.2699 | 1850 | 0.0006 | - |
206
+ | 2.3313 | 1900 | 0.0005 | - |
207
+ | 2.3926 | 1950 | 0.0009 | - |
208
+ | 2.4540 | 2000 | 0.0008 | - |
209
+ | 2.5153 | 2050 | 0.0004 | - |
210
+ | 2.5767 | 2100 | 0.0005 | - |
211
+ | 2.6380 | 2150 | 0.0005 | - |
212
+ | 2.6994 | 2200 | 0.0009 | - |
213
+ | 2.7607 | 2250 | 0.0006 | - |
214
+ | 2.8221 | 2300 | 0.0008 | - |
215
+ | 2.8834 | 2350 | 0.0004 | - |
216
+ | 2.9448 | 2400 | 0.0004 | - |
217
+ | 3.0 | 2445 | - | 0.3198 |
218
+ | 3.0061 | 2450 | 0.0003 | - |
219
+ | 3.0675 | 2500 | 0.0004 | - |
220
+ | 3.1288 | 2550 | 0.0002 | - |
221
+ | 3.1902 | 2600 | 0.0003 | - |
222
+ | 3.2515 | 2650 | 0.0004 | - |
223
+ | 3.3129 | 2700 | 0.0005 | - |
224
+ | 3.3742 | 2750 | 0.0003 | - |
225
+ | 3.4356 | 2800 | 0.0003 | - |
226
+ | 3.4969 | 2850 | 0.0005 | - |
227
+ | 3.5583 | 2900 | 0.0006 | - |
228
+ | 3.6196 | 2950 | 0.0005 | - |
229
+ | 3.6810 | 3000 | 0.0007 | - |
230
+ | 3.7423 | 3050 | 0.0004 | - |
231
+ | 3.8037 | 3100 | 0.0003 | - |
232
+ | 3.8650 | 3150 | 0.0005 | - |
233
+ | 3.9264 | 3200 | 0.0003 | - |
234
+ | 3.9877 | 3250 | 0.0007 | - |
235
+ | 4.0 | 3260 | - | 0.3176 |
236
+
237
+ * The bold row denotes the saved checkpoint.
238
+ ### Framework Versions
239
+ - Python: 3.10.12
240
+ - SetFit: 1.0.3
241
+ - Sentence Transformers: 2.2.2
242
+ - Transformers: 4.36.2
243
+ - PyTorch: 2.1.2+cu121
244
+ - Datasets: 2.16.1
245
+ - Tokenizers: 0.15.0
246
+
247
+ ## Citation
248
+
249
+ ### BibTeX
250
+ ```bibtex
251
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
252
+ doi = {10.48550/ARXIV.2209.11055},
253
+ url = {https://arxiv.org/abs/2209.11055},
254
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
255
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
256
+ title = {Efficient Few-Shot Learning Without Prompts},
257
+ publisher = {arXiv},
258
+ year = {2022},
259
+ copyright = {Creative Commons Attribution 4.0 International}
260
+ }
261
+ ```
262
+
263
+ <!--
264
+ ## Glossary
265
+
266
+ *Clearly define terms in order to be accessible across audiences.*
267
+ -->
268
+
269
+ <!--
270
+ ## Model Card Authors
271
+
272
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
273
+ -->
274
+
275
+ <!--
276
+ ## Model Card Contact
277
+
278
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
279
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_815/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.36.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "ShopCommercialGovernmentHealthcareEducationFoodOfficeReligious PlaceBankTransportationConstructionIndustryResidentialLandmarkRecreationFuelHotelUtilityAgricultural"
4
+ ],
5
+ "normalize_embeddings": false
6
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd1773f5fd2f194efddbd2719668e66db3d716fbedb9283623c4413a6f18c3de
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea13d8379d11439103aee052643d1978cc5c31b1ab881ae4e47aac094adb6515
3
+ size 106447
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "MPNetTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff