File size: 2,324 Bytes
5f8d76d 33564cf 5f8d76d 33564cf 5f8d76d 8ab49b2 5f8d76d 8ab49b2 5f8d76d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
language:
- ar
license: apache-2.0
base_model: tarteel-ai/whisper-base-ar-quran
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: raghaddd
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Zolfa Dataset
type: mozilla-foundation/common_voice_11_0
args: 'config: ar, split: test'
metrics:
- name: Wer
type: wer
value: 10.344827586206897
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# raghaddd
This model is a fine-tuned version of [tarteel-ai/whisper-base-ar-quran](https://huggingface.co/tarteel-ai/whisper-base-ar-quran) on the Zolfa Dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0160
- Wer: 10.3448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.382 | 1.0 | 21 | 0.0234 | 6.8966 |
| 0.0151 | 2.0 | 42 | 0.0056 | 0.0 |
| 0.0033 | 3.0 | 63 | 0.0066 | 0.0 |
| 0.0014 | 4.0 | 84 | 0.0112 | 10.3448 |
| 0.001 | 5.0 | 105 | 0.0113 | 3.4483 |
| 0.0005 | 6.0 | 126 | 0.0141 | 3.4483 |
| 0.0004 | 7.0 | 147 | 0.0140 | 10.3448 |
| 0.0005 | 8.0 | 168 | 0.0165 | 10.3448 |
| 0.0003 | 9.0 | 189 | 0.0145 | 10.3448 |
| 0.0003 | 10.0 | 210 | 0.0160 | 10.3448 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|