--- library_name: transformers language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: 'arabic Whisper Small ' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 13.0 type: mozilla-foundation/common_voice_13_0 config: ar split: test args: 'config: ar, split: test' metrics: - name: Wer type: wer value: 44.40746529373909 --- # arabic Whisper Small This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3384 - Wer: 44.4075 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3476 | 0.4148 | 1000 | 0.4130 | 52.3435 | | 0.2522 | 0.8295 | 2000 | 0.3676 | 49.2305 | | 0.1606 | 1.2443 | 3000 | 0.3475 | 44.8855 | | 0.161 | 1.6591 | 4000 | 0.3384 | 44.4075 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.0+cu118 - Datasets 3.0.0 - Tokenizers 0.19.1