File size: 11,206 Bytes
5ac8ea7 557281e 5ac8ea7 868f738 7549489 868f738 7549489 868f738 7549489 868f738 7549489 868f738 7549489 868f738 7549489 868f738 7549489 868f738 7549489 868f738 7549489 868f738 7549489 868f738 7549489 868f738 7549489 868f738 7549489 868f738 7549489 868f738 7549489 868f738 7549489 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
---
license: llama2
pipeline_tag: text-to-image
---
# LaVIT: Unified Language-Vision Pretraining in LLM with Dynamic Discrete Visual Tokenization
This is the official repository for the multi-modal large language model: **LaVIT**. The inference code of LaVIT can be found in [here](https://github.com/jy0205/LaVIT).
[[`arXiv`](https://arxiv.org/abs/2309.04669)] [[`BibTeX`](#Citing)]
## News and Updates
* ```2023.10.17``` πππ We release the pre-trained weight for **LaVIT** on the HuggingFace and provide the inference code of using it for both multi-modal understanding and generation.
* ```2023.10.31``` πππ We update the high-resolution pixel decoder in **LaVIT**, which supports to generate high resolution (1024 * 1024 pixels), muliple aspect ratios (1:1, 4:3, 3:2, 16:9 ...) and high aesthetics images. The quality of generated images have been improved significantly.
## Setup
### Requirements
The code for this repo is tested with PyTorch 1.13.1 and CUDA 11.7.
You should first install and configure the Pytorch Environment (including torch and torchvision) can then install the requirements with the following commands:
```shell
git clone https://github.com/jy0205/LaVIT.git
cd LaVIT
pip install -r requirements.txt
```
* (Optional) We recommend to use memory efficient attention by installing xFormers following the instructions in [here](https://huggingface.co/docs/diffusers/main/en/optimization/xformers). Then, you can set the argument `use_xformers=True` in `build_model` function to save the GPU memory and speed up inference.
### Model Zoo
We release the LaVIT weight that is built upon [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b) as the large language model.
> Note: Due to the license restrictions of Llama1, we cannot publish its weights. Thus, we release the weight of LaVIT based on the Llama2.
The pre-trained weight of LaVIT can be found on the huggingface from [here](https://huggingface.co/rain1011/LaVIT-7B-v1), which will take around 22GB of disk space. LaVIT achieves state-of-the-arts performance on various multi-modal downstream tasks. The detailed quantitive results are shown as follows:
#### Zero-shot Multi-modal Understanding
<table>
<thead align="center">
<tr>
<th rowspan="2">Model</th>
<th colspan="3">Image Captioning</th>
<th colspan="4">Visual Question Answering</th>
</tr>
<tr>
<th>COCO</th>
<th>NoCaps</th>
<th>Flickr30K</th>
<th>VQAv2</th>
<th>OK-VQA</th>
<th>GQA</th>
<th>VizWiz</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td>Flamingo-3B</td>
<td>73.0</td>
<td>-</td>
<td>60.6</td>
<td>49.2</td>
<td>41.2</td>
<td>-</td>
<td>28.9</td>
</tr>
<tr>
<td>Flamingo-9B</td>
<td>79.4</td>
<td>-</td>
<td>61.5</td>
<td>51.8</td>
<td>44.7</td>
<td>-</td>
<td>28.8</td>
</tr>
<tr>
<td>OpenFlamingo-9B</td>
<td>79.5</td>
<td>-</td>
<td>59.5</td>
<td>52.7</td>
<td>37.8</td>
<td>-</td>
<td>27.5</td>
</tr>
<tr>
<td>MetaLM</td>
<td>82.2</td>
<td>-</td>
<td>43.4</td>
<td>41.1</td>
<td>11.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kosmos-1</td>
<td>84.7</td>
<td>-</td>
<td>67.1</td>
<td>51.0</td>
<td>-</td>
<td>-</td>
<td>29.2</td>
</tr>
<tr>
<td>Kosmos-2</td>
<td>-</td>
<td>-</td>
<td>80.5</td>
<td>51.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BLIP-2 (Vicuna-7B)</td>
<td>-</td>
<td>107.5</td>
<td>74.9</td>
<td>-</td>
<td>-</td>
<td>41.3</td>
<td>25.3</td>
</tr>
<tr>
<td>BLIP-2 (Vicuna-13B)</td>
<td>-</td>
<td>103.9</td>
<td>71.6</td>
<td>-</td>
<td>-</td>
<td>32.3</td>
<td>19.6</td>
</tr>
<tr>
<td>CM3Leon-7B</td>
<td>61.6</td>
<td>-</td>
<td>-</td>
<td>47.6</td>
<td>-</td>
<td>-</td>
<td>37.6</td>
</tr>
<tr>
<td>Emu (LLaMA-1-13B)</td>
<td>112.4</td>
<td>-</td>
<td>-</td>
<td>52.0</td>
<td>38.2</td>
<td>-</td>
<td>34.2</td>
</tr>
<tr>
<td>LaVIT (LLaMA-1-7B)</td>
<td>134.0</td>
<td><b>114.2</b></td>
<td>83.0</td>
<td>66.0</td>
<td>54.6</td>
<td>46.8</td>
<td>38.5</td>
</tr>
<tr>
<td>LaVIT (LLaMA-2-7B)</td>
<td><b>134.6</b></td>
<td>113.1</td>
<td><b>83.2</b></td>
<td><b>68.2</b></td>
<td><b>55.7</b></td>
<td><b>48.0</b></td>
<td><b>45.3</b></td>
</tr>
</tbody>
</table>
#### Zero-shot Text-to-Image Generation
<table>
<thead>
<tr>
<th>Method</th>
<th>Model</th>
<th>Model type</th>
<th>FID</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td rowspan="9">Text2Image Specialist</td>
<td>DALL-E</td>
<td>Autoregressive</td>
<td>28.0</td>
</tr>
<tr>
<td>CogView</td>
<td>Autoregressive</td>
<td>27.1</td>
</tr>
<tr>
<td>StableDiffusion</td>
<td>Diffusion</td>
<td>12.6</td>
</tr>
<tr>
<td>GLIDE</td>
<td>Diffusion</td>
<td>12.2</td>
</tr>
<tr>
<td>DALL-E 2</td>
<td>Diffusion</td>
<td>10.4</td>
</tr>
<tr>
<td>Make-A-Scene</td>
<td>Autoregressive</td>
<td>11.8</td>
</tr>
<tr>
<td>MUSE-7.6B</td>
<td>Non-Autoregressive</td>
<td>7.9</td>
</tr>
<tr>
<td>Imagen-3.4B</td>
<td>Diffusion</td>
<td>7.3</td>
</tr>
<tr>
<td>Parti-20B</td>
<td>Autoregressive</td>
<td><b>7.2</b></td>
</tr>
<tr>
<td rowspan="5">Multimodal Large Langauge Model</td>
<td>GILL (OPT-6.7B)</td>
<td>LLM</td>
<td>12.2</td>
</tr>
<tr>
<td>Emu (LLaMA-1-13B)</td>
<td>LLM</td>
<td>11.7</td>
</tr>
<tr>
<td>CM3Leon-7B </td>
<td>LLM</td>
<td>10.8</td>
</tr>
<tr>
<td>LaVIT (LLaMA-1-7B)</td>
<td>LLM</td>
<td>7.4</td>
</tr>
<tr>
<td>LaVIT (LLaMA-2-7B)</td>
<td>LLM</td>
<td><b>7.2</b></td>
</tr>
</tbody>
</table>
## Usage
LaVIT can serve as a multi-modal generalist to perform both multi-modal comprehension and generation. Below, we provide some examples. Only a few lines of code are needed to use **LaVIT** for inference. We also provide the detailed examples in the following jupyter notebooks for learning how to interact with LaVIT.
* `understanding.ipynb` : examples for multi-modal understanding
* `text2image_synthesis.ipynb`: examples for the text-to-image generation.
* `multimodal_synthesis.ipynb`: examples for image synthesis with multi-modal prompts.
### Multi-modal Understanding
```python
import os
import random
import torch
import torch.nn as nn
from models import build_model
from PIL import Image
random.seed(42)
torch.manual_seed(42)
# The local directory you save the LaVIT pre-trained weight,
# it will automatically download the checkpoint from huggingface
model_path = '/path/LaVIT_weight'
# Using BFloat16 during inference
model_dtype = 'bf16' # Or set to fp16 to enable float16 inference
# Inference using GPU-0
device_id = 0
torch.cuda.set_device(device_id)
device = torch.device('cuda')
# Building LaVIT for understanding and load its weight from huggingface
model = build_model(model_path=model_path, model_dtype=model_dtype,
device_id=device_id, use_xformers=False, understanding=True)
model = model.to(device)
# Image Captioning
image_path = 'demo/caption_image.jpg'
caption = model.generate({"image": image_path})[0]
print(caption)
# an old photo of a horse and buggy in front of a building
# Visual Question Answering
image_path = 'demo/qa_image.jpg'
question = "What's that drink in the glass?"
answer = model.predict_answers({"image": image_path, "text_input": question}, max_len=10)[0]
print("The answer is: ", answer)
# The answer is: orange juice
```
### Text-to-Image Synthesis
For the Image generation, the Classifier-Free Guidance scale is important. A larger scale will encourage the model to generate samples highly related to the input prompt while sacrificing the image quality. We set `guidance_scale_for_llm=4.0` by default, you can increase this scale (e.g., 5.0 or 6.0) to encourage the generated image to follow the semantics of given prompts. Besides, you can modify the `ratio` to enable to generate the images with different aspect ratios.
```python
import os
import torch
import torch.nn as nn
from models import build_model
from PIL import Image
# The local directory you save the LaVIT pre-trained weight,
# it will automatically download the checkpoint from huggingface
model_path = '/path/LaVIT_weight'
# Using BFloat16 during inference
model_dtype = 'bf16' # Or set to fp16 to enable float16 inference
# Inference using GPU-0
device_id = 0
torch.cuda.set_device(device_id)
device = torch.device('cuda')
torch_dtype = torch.bfloat16 if model_dtype=="bf16" else torch.float16
# Building LaVIT for Generation and load the weight from huggingface
# You can set `use_xformers=True` if have installed xformers to save GPU mempry and speed up
model = build_model(model_path=model_path, model_dtype=model_dtype, device_id=device_id,
use_xformers=False, understanding=False, load_tokenizer=False)
model = model.to(device)
# Text-to-Image Generation
prompt = "a sculpture of a duck made of wool"
# LaVIT support 6 different image aspect ratios
ratio_dict = {
'1:1' : (1024, 1024),
'4:3' : (896, 1152),
'3:2' : (832, 1216),
'16:9' : (768, 1344),
'2:3' : (1216, 832),
'3:4' : (1152, 896),
}
# The image aspect ratio you want to generate
ratio = '1:1'
height, width = ratio_dict[ratio]
with torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype):
images = model.generate_image(prompt, width=width, height=height,
num_return_images=1, guidance_scale_for_llm=4.0, num_inference_steps=50)
images[0].save("output/i2t_output.jpg")
```
## Evaluation
The batch evaluation code with multiple GPUs on the adopted multi-modal benchmarks will be released in the following days.
## Acknowledgement
We are grateful for the following awesome projects when implementing LaVIT:
* [LLaMA](https://github.com/facebookresearch/llama): Open and Efficient Foundation Language Models
* [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2): Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
* [EVA-CLIP](https://github.com/baaivision/EVA/tree/master/EVA-CLIP): Improved Training Techniques for CLIP at Scale
* [BEIT](https://github.com/microsoft/unilm/tree/master/beit2): Masked Image Modeling with Vector-Quantized Visual Tokenizers
* [Diffusers](https://github.com/huggingface/diffusers): State-of-the-art diffusion models for image and audio generation in PyTorch.
## <a name="Citing"></a>Citation
Consider giving this repository a star and cite LaVIT in your publications if it helps your research.
```
@article{jin2023unified,
title={Unified Language-Vision Pretraining in LLM with Dynamic Discrete Visual Tokenization},
author={Jin, Yang and Xu, Kun and Xu, Kun and Chen, Liwei and Liao, Chao and Tan, Jianchao and Mu, Yadong and others},
journal={arXiv preprint arXiv:2309.04669},
year={2023}
}
|