|
import math |
|
import os |
|
import sys |
|
from glob import glob |
|
from pathlib import Path |
|
from typing import List, Optional |
|
|
|
sys.path.append(os.path.realpath(os.path.join(os.path.dirname(__file__), "../../"))) |
|
import cv2 |
|
import imageio |
|
import numpy as np |
|
import torch |
|
from einops import rearrange, repeat |
|
from fire import Fire |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
from rembg import remove |
|
from scripts.util.detection.nsfw_and_watermark_dectection import DeepFloydDataFiltering |
|
from sgm.inference.helpers import embed_watermark |
|
from sgm.util import default, instantiate_from_config |
|
from torchvision.transforms import ToTensor |
|
|
|
|
|
def sample( |
|
input_path: str = "assets/test_image.png", |
|
num_frames: Optional[int] = None, |
|
num_steps: Optional[int] = None, |
|
version: str = "svd", |
|
fps_id: int = 6, |
|
motion_bucket_id: int = 127, |
|
cond_aug: float = 0.02, |
|
seed: int = 23, |
|
decoding_t: int = 14, |
|
device: str = "cuda", |
|
output_folder: Optional[str] = None, |
|
elevations_deg: Optional[float | List[float]] = 10.0, |
|
azimuths_deg: Optional[List[float]] = None, |
|
image_frame_ratio: Optional[float] = None, |
|
verbose: Optional[bool] = False, |
|
): |
|
""" |
|
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each |
|
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`. |
|
""" |
|
|
|
if version == "svd": |
|
num_frames = default(num_frames, 14) |
|
num_steps = default(num_steps, 25) |
|
output_folder = default(output_folder, "outputs/simple_video_sample/svd/") |
|
model_config = "scripts/sampling/configs/svd.yaml" |
|
elif version == "svd_xt": |
|
num_frames = default(num_frames, 25) |
|
num_steps = default(num_steps, 30) |
|
output_folder = default(output_folder, "outputs/simple_video_sample/svd_xt/") |
|
model_config = "scripts/sampling/configs/svd_xt.yaml" |
|
elif version == "svd_image_decoder": |
|
num_frames = default(num_frames, 14) |
|
num_steps = default(num_steps, 25) |
|
output_folder = default( |
|
output_folder, "outputs/simple_video_sample/svd_image_decoder/" |
|
) |
|
model_config = "scripts/sampling/configs/svd_image_decoder.yaml" |
|
elif version == "svd_xt_image_decoder": |
|
num_frames = default(num_frames, 25) |
|
num_steps = default(num_steps, 30) |
|
output_folder = default( |
|
output_folder, "outputs/simple_video_sample/svd_xt_image_decoder/" |
|
) |
|
model_config = "scripts/sampling/configs/svd_xt_image_decoder.yaml" |
|
elif version == "sv3d_u": |
|
num_frames = 21 |
|
num_steps = default(num_steps, 50) |
|
output_folder = default(output_folder, "outputs/simple_video_sample/sv3d_u/") |
|
model_config = "scripts/sampling/configs/sv3d_u.yaml" |
|
cond_aug = 1e-5 |
|
elif version == "sv3d_p": |
|
num_frames = 21 |
|
num_steps = default(num_steps, 50) |
|
output_folder = default(output_folder, "outputs/simple_video_sample/sv3d_p/") |
|
model_config = "scripts/sampling/configs/sv3d_p.yaml" |
|
cond_aug = 1e-5 |
|
if isinstance(elevations_deg, float) or isinstance(elevations_deg, int): |
|
elevations_deg = [elevations_deg] * num_frames |
|
assert ( |
|
len(elevations_deg) == num_frames |
|
), f"Please provide 1 value, or a list of {num_frames} values for elevations_deg! Given {len(elevations_deg)}" |
|
polars_rad = [np.deg2rad(90 - e) for e in elevations_deg] |
|
if azimuths_deg is None: |
|
azimuths_deg = np.linspace(0, 360, num_frames + 1)[1:] % 360 |
|
assert ( |
|
len(azimuths_deg) == num_frames |
|
), f"Please provide a list of {num_frames} values for azimuths_deg! Given {len(azimuths_deg)}" |
|
azimuths_rad = [np.deg2rad((a - azimuths_deg[-1]) % 360) for a in azimuths_deg] |
|
azimuths_rad[:-1].sort() |
|
else: |
|
raise ValueError(f"Version {version} does not exist.") |
|
|
|
model, filter = load_model( |
|
model_config, |
|
device, |
|
num_frames, |
|
num_steps, |
|
verbose, |
|
) |
|
torch.manual_seed(seed) |
|
|
|
path = Path(input_path) |
|
all_img_paths = [] |
|
if path.is_file(): |
|
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]): |
|
all_img_paths = [input_path] |
|
else: |
|
raise ValueError("Path is not valid image file.") |
|
elif path.is_dir(): |
|
all_img_paths = sorted( |
|
[ |
|
f |
|
for f in path.iterdir() |
|
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"] |
|
] |
|
) |
|
if len(all_img_paths) == 0: |
|
raise ValueError("Folder does not contain any images.") |
|
else: |
|
raise ValueError |
|
|
|
for input_img_path in all_img_paths: |
|
if "sv3d" in version: |
|
image = Image.open(input_img_path) |
|
if image.mode == "RGBA": |
|
pass |
|
else: |
|
|
|
image.thumbnail([768, 768], Image.Resampling.LANCZOS) |
|
image = remove(image.convert("RGBA"), alpha_matting=True) |
|
|
|
|
|
image_arr = np.array(image) |
|
in_w, in_h = image_arr.shape[:2] |
|
ret, mask = cv2.threshold( |
|
np.array(image.split()[-1]), 0, 255, cv2.THRESH_BINARY |
|
) |
|
x, y, w, h = cv2.boundingRect(mask) |
|
max_size = max(w, h) |
|
side_len = ( |
|
int(max_size / image_frame_ratio) |
|
if image_frame_ratio is not None |
|
else in_w |
|
) |
|
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8) |
|
center = side_len // 2 |
|
padded_image[ |
|
center - h // 2 : center - h // 2 + h, |
|
center - w // 2 : center - w // 2 + w, |
|
] = image_arr[y : y + h, x : x + w] |
|
|
|
rgba = Image.fromarray(padded_image).resize((576, 576), Image.LANCZOS) |
|
|
|
rgba_arr = np.array(rgba) / 255.0 |
|
rgb = rgba_arr[..., :3] * rgba_arr[..., -1:] + (1 - rgba_arr[..., -1:]) |
|
input_image = Image.fromarray((rgb * 255).astype(np.uint8)) |
|
|
|
else: |
|
with Image.open(input_img_path) as image: |
|
if image.mode == "RGBA": |
|
input_image = image.convert("RGB") |
|
w, h = image.size |
|
|
|
if h % 64 != 0 or w % 64 != 0: |
|
width, height = map(lambda x: x - x % 64, (w, h)) |
|
input_image = input_image.resize((width, height)) |
|
print( |
|
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!" |
|
) |
|
|
|
image = ToTensor()(input_image) |
|
image = image * 2.0 - 1.0 |
|
|
|
image = image.unsqueeze(0).to(device) |
|
H, W = image.shape[2:] |
|
assert image.shape[1] == 3 |
|
F = 8 |
|
C = 4 |
|
shape = (num_frames, C, H // F, W // F) |
|
if (H, W) != (576, 1024) and "sv3d" not in version: |
|
print( |
|
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`." |
|
) |
|
if (H, W) != (576, 576) and "sv3d" in version: |
|
print( |
|
"WARNING: The conditioning frame you provided is not 576x576. This leads to suboptimal performance as model was only trained on 576x576." |
|
) |
|
if motion_bucket_id > 255: |
|
print( |
|
"WARNING: High motion bucket! This may lead to suboptimal performance." |
|
) |
|
|
|
if fps_id < 5: |
|
print("WARNING: Small fps value! This may lead to suboptimal performance.") |
|
|
|
if fps_id > 30: |
|
print("WARNING: Large fps value! This may lead to suboptimal performance.") |
|
|
|
value_dict = {} |
|
value_dict["cond_frames_without_noise"] = image |
|
value_dict["motion_bucket_id"] = motion_bucket_id |
|
value_dict["fps_id"] = fps_id |
|
value_dict["cond_aug"] = cond_aug |
|
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image) |
|
if "sv3d_p" in version: |
|
value_dict["polars_rad"] = polars_rad |
|
value_dict["azimuths_rad"] = azimuths_rad |
|
|
|
with torch.no_grad(): |
|
with torch.autocast(device): |
|
batch, batch_uc = get_batch( |
|
get_unique_embedder_keys_from_conditioner(model.conditioner), |
|
value_dict, |
|
[1, num_frames], |
|
T=num_frames, |
|
device=device, |
|
) |
|
c, uc = model.conditioner.get_unconditional_conditioning( |
|
batch, |
|
batch_uc=batch_uc, |
|
force_uc_zero_embeddings=[ |
|
"cond_frames", |
|
"cond_frames_without_noise", |
|
], |
|
) |
|
|
|
for k in ["crossattn", "concat"]: |
|
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames) |
|
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames) |
|
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames) |
|
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames) |
|
|
|
randn = torch.randn(shape, device=device) |
|
|
|
additional_model_inputs = {} |
|
additional_model_inputs["image_only_indicator"] = torch.zeros( |
|
2, num_frames |
|
).to(device) |
|
additional_model_inputs["num_video_frames"] = batch["num_video_frames"] |
|
|
|
def denoiser(input, sigma, c): |
|
return model.denoiser( |
|
model.model, input, sigma, c, **additional_model_inputs |
|
) |
|
|
|
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc) |
|
model.en_and_decode_n_samples_a_time = decoding_t |
|
samples_x = model.decode_first_stage(samples_z) |
|
if "sv3d" in version: |
|
samples_x[-1:] = value_dict["cond_frames_without_noise"] |
|
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) |
|
|
|
os.makedirs(output_folder, exist_ok=True) |
|
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) |
|
|
|
imageio.imwrite( |
|
os.path.join(output_folder, f"{base_count:06d}.jpg"), input_image |
|
) |
|
|
|
samples = embed_watermark(samples) |
|
samples = filter(samples) |
|
vid = ( |
|
(rearrange(samples, "t c h w -> t h w c") * 255) |
|
.cpu() |
|
.numpy() |
|
.astype(np.uint8) |
|
) |
|
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") |
|
imageio.mimwrite(video_path, vid) |
|
|
|
|
|
def get_unique_embedder_keys_from_conditioner(conditioner): |
|
return list(set([x.input_key for x in conditioner.embedders])) |
|
|
|
|
|
def get_batch(keys, value_dict, N, T, device): |
|
batch = {} |
|
batch_uc = {} |
|
|
|
for key in keys: |
|
if key == "fps_id": |
|
batch[key] = ( |
|
torch.tensor([value_dict["fps_id"]]) |
|
.to(device) |
|
.repeat(int(math.prod(N))) |
|
) |
|
elif key == "motion_bucket_id": |
|
batch[key] = ( |
|
torch.tensor([value_dict["motion_bucket_id"]]) |
|
.to(device) |
|
.repeat(int(math.prod(N))) |
|
) |
|
elif key == "cond_aug": |
|
batch[key] = repeat( |
|
torch.tensor([value_dict["cond_aug"]]).to(device), |
|
"1 -> b", |
|
b=math.prod(N), |
|
) |
|
elif key == "cond_frames" or key == "cond_frames_without_noise": |
|
batch[key] = repeat(value_dict[key], "1 ... -> b ...", b=N[0]) |
|
elif key == "polars_rad" or key == "azimuths_rad": |
|
batch[key] = torch.tensor(value_dict[key]).to(device).repeat(N[0]) |
|
else: |
|
batch[key] = value_dict[key] |
|
|
|
if T is not None: |
|
batch["num_video_frames"] = T |
|
|
|
for key in batch.keys(): |
|
if key not in batch_uc and isinstance(batch[key], torch.Tensor): |
|
batch_uc[key] = torch.clone(batch[key]) |
|
return batch, batch_uc |
|
|
|
|
|
def load_model( |
|
config: str, |
|
device: str, |
|
num_frames: int, |
|
num_steps: int, |
|
verbose: bool = False, |
|
): |
|
config = OmegaConf.load(config) |
|
if device == "cuda": |
|
config.model.params.conditioner_config.params.emb_models[ |
|
0 |
|
].params.open_clip_embedding_config.params.init_device = device |
|
|
|
config.model.params.sampler_config.params.verbose = verbose |
|
config.model.params.sampler_config.params.num_steps = num_steps |
|
config.model.params.sampler_config.params.guider_config.params.num_frames = ( |
|
num_frames |
|
) |
|
if device == "cuda": |
|
with torch.device(device): |
|
model = instantiate_from_config(config.model).to(device).eval() |
|
else: |
|
model = instantiate_from_config(config.model).to(device).eval() |
|
|
|
filter = DeepFloydDataFiltering(verbose=False, device=device) |
|
return model, filter |
|
|
|
|
|
if __name__ == "__main__": |
|
Fire(sample) |
|
|