SpecialSDXL / scripts /sampling /simple_video_sample.py
raovasudev762's picture
Upload 122 files
e139fa3 verified
import math
import os
import sys
from glob import glob
from pathlib import Path
from typing import List, Optional
sys.path.append(os.path.realpath(os.path.join(os.path.dirname(__file__), "../../")))
import cv2
import imageio
import numpy as np
import torch
from einops import rearrange, repeat
from fire import Fire
from omegaconf import OmegaConf
from PIL import Image
from rembg import remove
from scripts.util.detection.nsfw_and_watermark_dectection import DeepFloydDataFiltering
from sgm.inference.helpers import embed_watermark
from sgm.util import default, instantiate_from_config
from torchvision.transforms import ToTensor
def sample(
input_path: str = "assets/test_image.png", # Can either be image file or folder with image files
num_frames: Optional[int] = None, # 21 for SV3D
num_steps: Optional[int] = None,
version: str = "svd",
fps_id: int = 6,
motion_bucket_id: int = 127,
cond_aug: float = 0.02,
seed: int = 23,
decoding_t: int = 14, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
device: str = "cuda",
output_folder: Optional[str] = None,
elevations_deg: Optional[float | List[float]] = 10.0, # For SV3D
azimuths_deg: Optional[List[float]] = None, # For SV3D
image_frame_ratio: Optional[float] = None,
verbose: Optional[bool] = False,
):
"""
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
"""
if version == "svd":
num_frames = default(num_frames, 14)
num_steps = default(num_steps, 25)
output_folder = default(output_folder, "outputs/simple_video_sample/svd/")
model_config = "scripts/sampling/configs/svd.yaml"
elif version == "svd_xt":
num_frames = default(num_frames, 25)
num_steps = default(num_steps, 30)
output_folder = default(output_folder, "outputs/simple_video_sample/svd_xt/")
model_config = "scripts/sampling/configs/svd_xt.yaml"
elif version == "svd_image_decoder":
num_frames = default(num_frames, 14)
num_steps = default(num_steps, 25)
output_folder = default(
output_folder, "outputs/simple_video_sample/svd_image_decoder/"
)
model_config = "scripts/sampling/configs/svd_image_decoder.yaml"
elif version == "svd_xt_image_decoder":
num_frames = default(num_frames, 25)
num_steps = default(num_steps, 30)
output_folder = default(
output_folder, "outputs/simple_video_sample/svd_xt_image_decoder/"
)
model_config = "scripts/sampling/configs/svd_xt_image_decoder.yaml"
elif version == "sv3d_u":
num_frames = 21
num_steps = default(num_steps, 50)
output_folder = default(output_folder, "outputs/simple_video_sample/sv3d_u/")
model_config = "scripts/sampling/configs/sv3d_u.yaml"
cond_aug = 1e-5
elif version == "sv3d_p":
num_frames = 21
num_steps = default(num_steps, 50)
output_folder = default(output_folder, "outputs/simple_video_sample/sv3d_p/")
model_config = "scripts/sampling/configs/sv3d_p.yaml"
cond_aug = 1e-5
if isinstance(elevations_deg, float) or isinstance(elevations_deg, int):
elevations_deg = [elevations_deg] * num_frames
assert (
len(elevations_deg) == num_frames
), f"Please provide 1 value, or a list of {num_frames} values for elevations_deg! Given {len(elevations_deg)}"
polars_rad = [np.deg2rad(90 - e) for e in elevations_deg]
if azimuths_deg is None:
azimuths_deg = np.linspace(0, 360, num_frames + 1)[1:] % 360
assert (
len(azimuths_deg) == num_frames
), f"Please provide a list of {num_frames} values for azimuths_deg! Given {len(azimuths_deg)}"
azimuths_rad = [np.deg2rad((a - azimuths_deg[-1]) % 360) for a in azimuths_deg]
azimuths_rad[:-1].sort()
else:
raise ValueError(f"Version {version} does not exist.")
model, filter = load_model(
model_config,
device,
num_frames,
num_steps,
verbose,
)
torch.manual_seed(seed)
path = Path(input_path)
all_img_paths = []
if path.is_file():
if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]):
all_img_paths = [input_path]
else:
raise ValueError("Path is not valid image file.")
elif path.is_dir():
all_img_paths = sorted(
[
f
for f in path.iterdir()
if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"]
]
)
if len(all_img_paths) == 0:
raise ValueError("Folder does not contain any images.")
else:
raise ValueError
for input_img_path in all_img_paths:
if "sv3d" in version:
image = Image.open(input_img_path)
if image.mode == "RGBA":
pass
else:
# remove bg
image.thumbnail([768, 768], Image.Resampling.LANCZOS)
image = remove(image.convert("RGBA"), alpha_matting=True)
# resize object in frame
image_arr = np.array(image)
in_w, in_h = image_arr.shape[:2]
ret, mask = cv2.threshold(
np.array(image.split()[-1]), 0, 255, cv2.THRESH_BINARY
)
x, y, w, h = cv2.boundingRect(mask)
max_size = max(w, h)
side_len = (
int(max_size / image_frame_ratio)
if image_frame_ratio is not None
else in_w
)
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8)
center = side_len // 2
padded_image[
center - h // 2 : center - h // 2 + h,
center - w // 2 : center - w // 2 + w,
] = image_arr[y : y + h, x : x + w]
# resize frame to 576x576
rgba = Image.fromarray(padded_image).resize((576, 576), Image.LANCZOS)
# white bg
rgba_arr = np.array(rgba) / 255.0
rgb = rgba_arr[..., :3] * rgba_arr[..., -1:] + (1 - rgba_arr[..., -1:])
input_image = Image.fromarray((rgb * 255).astype(np.uint8))
else:
with Image.open(input_img_path) as image:
if image.mode == "RGBA":
input_image = image.convert("RGB")
w, h = image.size
if h % 64 != 0 or w % 64 != 0:
width, height = map(lambda x: x - x % 64, (w, h))
input_image = input_image.resize((width, height))
print(
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
)
image = ToTensor()(input_image)
image = image * 2.0 - 1.0
image = image.unsqueeze(0).to(device)
H, W = image.shape[2:]
assert image.shape[1] == 3
F = 8
C = 4
shape = (num_frames, C, H // F, W // F)
if (H, W) != (576, 1024) and "sv3d" not in version:
print(
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
)
if (H, W) != (576, 576) and "sv3d" in version:
print(
"WARNING: The conditioning frame you provided is not 576x576. This leads to suboptimal performance as model was only trained on 576x576."
)
if motion_bucket_id > 255:
print(
"WARNING: High motion bucket! This may lead to suboptimal performance."
)
if fps_id < 5:
print("WARNING: Small fps value! This may lead to suboptimal performance.")
if fps_id > 30:
print("WARNING: Large fps value! This may lead to suboptimal performance.")
value_dict = {}
value_dict["cond_frames_without_noise"] = image
value_dict["motion_bucket_id"] = motion_bucket_id
value_dict["fps_id"] = fps_id
value_dict["cond_aug"] = cond_aug
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
if "sv3d_p" in version:
value_dict["polars_rad"] = polars_rad
value_dict["azimuths_rad"] = azimuths_rad
with torch.no_grad():
with torch.autocast(device):
batch, batch_uc = get_batch(
get_unique_embedder_keys_from_conditioner(model.conditioner),
value_dict,
[1, num_frames],
T=num_frames,
device=device,
)
c, uc = model.conditioner.get_unconditional_conditioning(
batch,
batch_uc=batch_uc,
force_uc_zero_embeddings=[
"cond_frames",
"cond_frames_without_noise",
],
)
for k in ["crossattn", "concat"]:
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
randn = torch.randn(shape, device=device)
additional_model_inputs = {}
additional_model_inputs["image_only_indicator"] = torch.zeros(
2, num_frames
).to(device)
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
def denoiser(input, sigma, c):
return model.denoiser(
model.model, input, sigma, c, **additional_model_inputs
)
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
model.en_and_decode_n_samples_a_time = decoding_t
samples_x = model.decode_first_stage(samples_z)
if "sv3d" in version:
samples_x[-1:] = value_dict["cond_frames_without_noise"]
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
imageio.imwrite(
os.path.join(output_folder, f"{base_count:06d}.jpg"), input_image
)
samples = embed_watermark(samples)
samples = filter(samples)
vid = (
(rearrange(samples, "t c h w -> t h w c") * 255)
.cpu()
.numpy()
.astype(np.uint8)
)
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
imageio.mimwrite(video_path, vid)
def get_unique_embedder_keys_from_conditioner(conditioner):
return list(set([x.input_key for x in conditioner.embedders]))
def get_batch(keys, value_dict, N, T, device):
batch = {}
batch_uc = {}
for key in keys:
if key == "fps_id":
batch[key] = (
torch.tensor([value_dict["fps_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "motion_bucket_id":
batch[key] = (
torch.tensor([value_dict["motion_bucket_id"]])
.to(device)
.repeat(int(math.prod(N)))
)
elif key == "cond_aug":
batch[key] = repeat(
torch.tensor([value_dict["cond_aug"]]).to(device),
"1 -> b",
b=math.prod(N),
)
elif key == "cond_frames" or key == "cond_frames_without_noise":
batch[key] = repeat(value_dict[key], "1 ... -> b ...", b=N[0])
elif key == "polars_rad" or key == "azimuths_rad":
batch[key] = torch.tensor(value_dict[key]).to(device).repeat(N[0])
else:
batch[key] = value_dict[key]
if T is not None:
batch["num_video_frames"] = T
for key in batch.keys():
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
batch_uc[key] = torch.clone(batch[key])
return batch, batch_uc
def load_model(
config: str,
device: str,
num_frames: int,
num_steps: int,
verbose: bool = False,
):
config = OmegaConf.load(config)
if device == "cuda":
config.model.params.conditioner_config.params.emb_models[
0
].params.open_clip_embedding_config.params.init_device = device
config.model.params.sampler_config.params.verbose = verbose
config.model.params.sampler_config.params.num_steps = num_steps
config.model.params.sampler_config.params.guider_config.params.num_frames = (
num_frames
)
if device == "cuda":
with torch.device(device):
model = instantiate_from_config(config.model).to(device).eval()
else:
model = instantiate_from_config(config.model).to(device).eval()
filter = DeepFloydDataFiltering(verbose=False, device=device)
return model, filter
if __name__ == "__main__":
Fire(sample)