import math import os import sys from glob import glob from pathlib import Path from typing import List, Optional sys.path.append(os.path.realpath(os.path.join(os.path.dirname(__file__), "../../"))) import cv2 import imageio import numpy as np import torch from einops import rearrange, repeat from fire import Fire from omegaconf import OmegaConf from PIL import Image from rembg import remove from scripts.util.detection.nsfw_and_watermark_dectection import DeepFloydDataFiltering from sgm.inference.helpers import embed_watermark from sgm.util import default, instantiate_from_config from torchvision.transforms import ToTensor def sample( input_path: str = "assets/test_image.png", # Can either be image file or folder with image files num_frames: Optional[int] = None, # 21 for SV3D num_steps: Optional[int] = None, version: str = "svd", fps_id: int = 6, motion_bucket_id: int = 127, cond_aug: float = 0.02, seed: int = 23, decoding_t: int = 14, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. device: str = "cuda", output_folder: Optional[str] = None, elevations_deg: Optional[float | List[float]] = 10.0, # For SV3D azimuths_deg: Optional[List[float]] = None, # For SV3D image_frame_ratio: Optional[float] = None, verbose: Optional[bool] = False, ): """ Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`. """ if version == "svd": num_frames = default(num_frames, 14) num_steps = default(num_steps, 25) output_folder = default(output_folder, "outputs/simple_video_sample/svd/") model_config = "scripts/sampling/configs/svd.yaml" elif version == "svd_xt": num_frames = default(num_frames, 25) num_steps = default(num_steps, 30) output_folder = default(output_folder, "outputs/simple_video_sample/svd_xt/") model_config = "scripts/sampling/configs/svd_xt.yaml" elif version == "svd_image_decoder": num_frames = default(num_frames, 14) num_steps = default(num_steps, 25) output_folder = default( output_folder, "outputs/simple_video_sample/svd_image_decoder/" ) model_config = "scripts/sampling/configs/svd_image_decoder.yaml" elif version == "svd_xt_image_decoder": num_frames = default(num_frames, 25) num_steps = default(num_steps, 30) output_folder = default( output_folder, "outputs/simple_video_sample/svd_xt_image_decoder/" ) model_config = "scripts/sampling/configs/svd_xt_image_decoder.yaml" elif version == "sv3d_u": num_frames = 21 num_steps = default(num_steps, 50) output_folder = default(output_folder, "outputs/simple_video_sample/sv3d_u/") model_config = "scripts/sampling/configs/sv3d_u.yaml" cond_aug = 1e-5 elif version == "sv3d_p": num_frames = 21 num_steps = default(num_steps, 50) output_folder = default(output_folder, "outputs/simple_video_sample/sv3d_p/") model_config = "scripts/sampling/configs/sv3d_p.yaml" cond_aug = 1e-5 if isinstance(elevations_deg, float) or isinstance(elevations_deg, int): elevations_deg = [elevations_deg] * num_frames assert ( len(elevations_deg) == num_frames ), f"Please provide 1 value, or a list of {num_frames} values for elevations_deg! Given {len(elevations_deg)}" polars_rad = [np.deg2rad(90 - e) for e in elevations_deg] if azimuths_deg is None: azimuths_deg = np.linspace(0, 360, num_frames + 1)[1:] % 360 assert ( len(azimuths_deg) == num_frames ), f"Please provide a list of {num_frames} values for azimuths_deg! Given {len(azimuths_deg)}" azimuths_rad = [np.deg2rad((a - azimuths_deg[-1]) % 360) for a in azimuths_deg] azimuths_rad[:-1].sort() else: raise ValueError(f"Version {version} does not exist.") model, filter = load_model( model_config, device, num_frames, num_steps, verbose, ) torch.manual_seed(seed) path = Path(input_path) all_img_paths = [] if path.is_file(): if any([input_path.endswith(x) for x in ["jpg", "jpeg", "png"]]): all_img_paths = [input_path] else: raise ValueError("Path is not valid image file.") elif path.is_dir(): all_img_paths = sorted( [ f for f in path.iterdir() if f.is_file() and f.suffix.lower() in [".jpg", ".jpeg", ".png"] ] ) if len(all_img_paths) == 0: raise ValueError("Folder does not contain any images.") else: raise ValueError for input_img_path in all_img_paths: if "sv3d" in version: image = Image.open(input_img_path) if image.mode == "RGBA": pass else: # remove bg image.thumbnail([768, 768], Image.Resampling.LANCZOS) image = remove(image.convert("RGBA"), alpha_matting=True) # resize object in frame image_arr = np.array(image) in_w, in_h = image_arr.shape[:2] ret, mask = cv2.threshold( np.array(image.split()[-1]), 0, 255, cv2.THRESH_BINARY ) x, y, w, h = cv2.boundingRect(mask) max_size = max(w, h) side_len = ( int(max_size / image_frame_ratio) if image_frame_ratio is not None else in_w ) padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8) center = side_len // 2 padded_image[ center - h // 2 : center - h // 2 + h, center - w // 2 : center - w // 2 + w, ] = image_arr[y : y + h, x : x + w] # resize frame to 576x576 rgba = Image.fromarray(padded_image).resize((576, 576), Image.LANCZOS) # white bg rgba_arr = np.array(rgba) / 255.0 rgb = rgba_arr[..., :3] * rgba_arr[..., -1:] + (1 - rgba_arr[..., -1:]) input_image = Image.fromarray((rgb * 255).astype(np.uint8)) else: with Image.open(input_img_path) as image: if image.mode == "RGBA": input_image = image.convert("RGB") w, h = image.size if h % 64 != 0 or w % 64 != 0: width, height = map(lambda x: x - x % 64, (w, h)) input_image = input_image.resize((width, height)) print( f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!" ) image = ToTensor()(input_image) image = image * 2.0 - 1.0 image = image.unsqueeze(0).to(device) H, W = image.shape[2:] assert image.shape[1] == 3 F = 8 C = 4 shape = (num_frames, C, H // F, W // F) if (H, W) != (576, 1024) and "sv3d" not in version: print( "WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`." ) if (H, W) != (576, 576) and "sv3d" in version: print( "WARNING: The conditioning frame you provided is not 576x576. This leads to suboptimal performance as model was only trained on 576x576." ) if motion_bucket_id > 255: print( "WARNING: High motion bucket! This may lead to suboptimal performance." ) if fps_id < 5: print("WARNING: Small fps value! This may lead to suboptimal performance.") if fps_id > 30: print("WARNING: Large fps value! This may lead to suboptimal performance.") value_dict = {} value_dict["cond_frames_without_noise"] = image value_dict["motion_bucket_id"] = motion_bucket_id value_dict["fps_id"] = fps_id value_dict["cond_aug"] = cond_aug value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image) if "sv3d_p" in version: value_dict["polars_rad"] = polars_rad value_dict["azimuths_rad"] = azimuths_rad with torch.no_grad(): with torch.autocast(device): batch, batch_uc = get_batch( get_unique_embedder_keys_from_conditioner(model.conditioner), value_dict, [1, num_frames], T=num_frames, device=device, ) c, uc = model.conditioner.get_unconditional_conditioning( batch, batch_uc=batch_uc, force_uc_zero_embeddings=[ "cond_frames", "cond_frames_without_noise", ], ) for k in ["crossattn", "concat"]: uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames) uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames) c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames) c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames) randn = torch.randn(shape, device=device) additional_model_inputs = {} additional_model_inputs["image_only_indicator"] = torch.zeros( 2, num_frames ).to(device) additional_model_inputs["num_video_frames"] = batch["num_video_frames"] def denoiser(input, sigma, c): return model.denoiser( model.model, input, sigma, c, **additional_model_inputs ) samples_z = model.sampler(denoiser, randn, cond=c, uc=uc) model.en_and_decode_n_samples_a_time = decoding_t samples_x = model.decode_first_stage(samples_z) if "sv3d" in version: samples_x[-1:] = value_dict["cond_frames_without_noise"] samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0) os.makedirs(output_folder, exist_ok=True) base_count = len(glob(os.path.join(output_folder, "*.mp4"))) imageio.imwrite( os.path.join(output_folder, f"{base_count:06d}.jpg"), input_image ) samples = embed_watermark(samples) samples = filter(samples) vid = ( (rearrange(samples, "t c h w -> t h w c") * 255) .cpu() .numpy() .astype(np.uint8) ) video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") imageio.mimwrite(video_path, vid) def get_unique_embedder_keys_from_conditioner(conditioner): return list(set([x.input_key for x in conditioner.embedders])) def get_batch(keys, value_dict, N, T, device): batch = {} batch_uc = {} for key in keys: if key == "fps_id": batch[key] = ( torch.tensor([value_dict["fps_id"]]) .to(device) .repeat(int(math.prod(N))) ) elif key == "motion_bucket_id": batch[key] = ( torch.tensor([value_dict["motion_bucket_id"]]) .to(device) .repeat(int(math.prod(N))) ) elif key == "cond_aug": batch[key] = repeat( torch.tensor([value_dict["cond_aug"]]).to(device), "1 -> b", b=math.prod(N), ) elif key == "cond_frames" or key == "cond_frames_without_noise": batch[key] = repeat(value_dict[key], "1 ... -> b ...", b=N[0]) elif key == "polars_rad" or key == "azimuths_rad": batch[key] = torch.tensor(value_dict[key]).to(device).repeat(N[0]) else: batch[key] = value_dict[key] if T is not None: batch["num_video_frames"] = T for key in batch.keys(): if key not in batch_uc and isinstance(batch[key], torch.Tensor): batch_uc[key] = torch.clone(batch[key]) return batch, batch_uc def load_model( config: str, device: str, num_frames: int, num_steps: int, verbose: bool = False, ): config = OmegaConf.load(config) if device == "cuda": config.model.params.conditioner_config.params.emb_models[ 0 ].params.open_clip_embedding_config.params.init_device = device config.model.params.sampler_config.params.verbose = verbose config.model.params.sampler_config.params.num_steps = num_steps config.model.params.sampler_config.params.guider_config.params.num_frames = ( num_frames ) if device == "cuda": with torch.device(device): model = instantiate_from_config(config.model).to(device).eval() else: model = instantiate_from_config(config.model).to(device).eval() filter = DeepFloydDataFiltering(verbose=False, device=device) return model, filter if __name__ == "__main__": Fire(sample)