import logging from abc import ABC, abstractmethod from typing import Dict, List, Literal, Optional, Tuple, Union import torch from einops import rearrange, repeat from ...util import append_dims, default logpy = logging.getLogger(__name__) class Guider(ABC): @abstractmethod def __call__(self, x: torch.Tensor, sigma: float) -> torch.Tensor: pass def prepare_inputs( self, x: torch.Tensor, s: float, c: Dict, uc: Dict ) -> Tuple[torch.Tensor, float, Dict]: pass class VanillaCFG(Guider): def __init__(self, scale: float): self.scale = scale def __call__(self, x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor: x_u, x_c = x.chunk(2) x_pred = x_u + self.scale * (x_c - x_u) return x_pred def prepare_inputs(self, x, s, c, uc): c_out = dict() for k in c: if k in ["vector", "crossattn", "concat"]: c_out[k] = torch.cat((uc[k], c[k]), 0) else: assert c[k] == uc[k] c_out[k] = c[k] return torch.cat([x] * 2), torch.cat([s] * 2), c_out class IdentityGuider(Guider): def __call__(self, x: torch.Tensor, sigma: float) -> torch.Tensor: return x def prepare_inputs( self, x: torch.Tensor, s: float, c: Dict, uc: Dict ) -> Tuple[torch.Tensor, float, Dict]: c_out = dict() for k in c: c_out[k] = c[k] return x, s, c_out class LinearPredictionGuider(Guider): def __init__( self, max_scale: float, num_frames: int, min_scale: float = 1.0, additional_cond_keys: Optional[Union[List[str], str]] = None, ): self.min_scale = min_scale self.max_scale = max_scale self.num_frames = num_frames self.scale = torch.linspace(min_scale, max_scale, num_frames).unsqueeze(0) additional_cond_keys = default(additional_cond_keys, []) if isinstance(additional_cond_keys, str): additional_cond_keys = [additional_cond_keys] self.additional_cond_keys = additional_cond_keys def __call__(self, x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor: x_u, x_c = x.chunk(2) x_u = rearrange(x_u, "(b t) ... -> b t ...", t=self.num_frames) x_c = rearrange(x_c, "(b t) ... -> b t ...", t=self.num_frames) scale = repeat(self.scale, "1 t -> b t", b=x_u.shape[0]) scale = append_dims(scale, x_u.ndim).to(x_u.device) return rearrange(x_u + scale * (x_c - x_u), "b t ... -> (b t) ...") def prepare_inputs( self, x: torch.Tensor, s: torch.Tensor, c: dict, uc: dict ) -> Tuple[torch.Tensor, torch.Tensor, dict]: c_out = dict() for k in c: if k in ["vector", "crossattn", "concat"] + self.additional_cond_keys: c_out[k] = torch.cat((uc[k], c[k]), 0) else: assert c[k] == uc[k] c_out[k] = c[k] return torch.cat([x] * 2), torch.cat([s] * 2), c_out class TrianglePredictionGuider(LinearPredictionGuider): def __init__( self, max_scale: float, num_frames: int, min_scale: float = 1.0, period: float | List[float] = 1.0, period_fusing: Literal["mean", "multiply", "max"] = "max", additional_cond_keys: Optional[Union[List[str], str]] = None, ): super().__init__(max_scale, num_frames, min_scale, additional_cond_keys) values = torch.linspace(0, 1, num_frames) # Constructs a triangle wave if isinstance(period, float): period = [period] scales = [] for p in period: scales.append(self.triangle_wave(values, p)) if period_fusing == "mean": scale = sum(scales) / len(period) elif period_fusing == "multiply": scale = torch.prod(torch.stack(scales), dim=0) elif period_fusing == "max": scale = torch.max(torch.stack(scales), dim=0).values self.scale = (scale * (max_scale - min_scale) + min_scale).unsqueeze(0) def triangle_wave(self, values: torch.Tensor, period) -> torch.Tensor: return 2 * (values / period - torch.floor(values / period + 0.5)).abs()