--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: Distilbert results: [] --- # Distilbert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6418 - Accuracy: 0.7992 - F1: 0.7411 - Precision: 0.7935 - Recall: 0.6952 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6496 | 1.0 | 32 | 0.5694 | 0.6811 | 0.5888 | 0.6304 | 0.5524 | | 0.4365 | 2.0 | 64 | 0.5541 | 0.7441 | 0.6409 | 0.7632 | 0.5524 | | 0.2431 | 3.0 | 96 | 0.5720 | 0.7795 | 0.7282 | 0.7426 | 0.7143 | | 0.1262 | 4.0 | 128 | 0.5727 | 0.7874 | 0.7429 | 0.7429 | 0.7429 | | 0.0742 | 5.0 | 160 | 0.6418 | 0.7992 | 0.7411 | 0.7935 | 0.6952 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 2.20.0 - Tokenizers 0.20.0