raulgdp commited on
Commit
7c8f9e0
1 Parent(s): 6b4093e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -39
README.md CHANGED
@@ -1,9 +1,8 @@
1
  ---
2
  license: apache-2.0
 
3
  tags:
4
  - generated_from_trainer
5
- datasets:
6
- - conll2002
7
  metrics:
8
  - precision
9
  - recall
@@ -11,29 +10,7 @@ metrics:
11
  - accuracy
12
  model-index:
13
  - name: bert-finetuned-ner
14
- results:
15
- - task:
16
- name: Token Classification
17
- type: token-classification
18
- dataset:
19
- name: conll2002
20
- type: conll2002
21
- config: es
22
- split: validation
23
- args: es
24
- metrics:
25
- - name: Precision
26
- type: precision
27
- value: 0.8734693877551021
28
- - name: Recall
29
- type: recall
30
- value: 0.8851102941176471
31
- - name: F1
32
- type: f1
33
- value: 0.8792513124857338
34
- - name: Accuracy
35
- type: accuracy
36
- value: 0.979541360041528
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,13 +18,13 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  # bert-finetuned-ner
43
 
44
- This model is a fine-tuned version of [BSC-LT/roberta-base-bne-capitel-ner](https://huggingface.co/BSC-LT/roberta-base-bne-capitel-ner) on the conll2002 dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.0911
47
- - Precision: 0.8735
48
- - Recall: 0.8851
49
- - F1: 0.8793
50
- - Accuracy: 0.9795
51
 
52
  ## Model description
53
 
@@ -67,8 +44,8 @@ More information needed
67
 
68
  The following hyperparameters were used during training:
69
  - learning_rate: 2e-05
70
- - train_batch_size: 16
71
- - eval_batch_size: 16
72
  - seed: 42
73
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
  - lr_scheduler_type: linear
@@ -78,14 +55,14 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | 0.0981 | 1.0 | 521 | 0.0849 | 0.8612 | 0.8814 | 0.8712 | 0.9789 |
82
- | 0.0327 | 2.0 | 1042 | 0.0833 | 0.8634 | 0.8814 | 0.8723 | 0.9796 |
83
- | 0.0193 | 3.0 | 1563 | 0.0911 | 0.8735 | 0.8851 | 0.8793 | 0.9795 |
84
 
85
 
86
  ### Framework versions
87
 
88
- - Transformers 4.30.2
89
- - Pytorch 2.0.0
90
- - Datasets 2.1.0
91
  - Tokenizers 0.13.3
 
1
  ---
2
  license: apache-2.0
3
+ base_model: bert-base-cased
4
  tags:
5
  - generated_from_trainer
 
 
6
  metrics:
7
  - precision
8
  - recall
 
10
  - accuracy
11
  model-index:
12
  - name: bert-finetuned-ner
13
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
18
 
19
  # bert-finetuned-ner
20
 
21
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.0602
24
+ - Precision: 0.9370
25
+ - Recall: 0.9509
26
+ - F1: 0.9439
27
+ - Accuracy: 0.9864
28
 
29
  ## Model description
30
 
 
44
 
45
  The following hyperparameters were used during training:
46
  - learning_rate: 2e-05
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 8
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.0803 | 1.0 | 1756 | 0.0857 | 0.9059 | 0.9302 | 0.9179 | 0.9802 |
59
+ | 0.0413 | 2.0 | 3512 | 0.0578 | 0.9248 | 0.9483 | 0.9364 | 0.9858 |
60
+ | 0.0259 | 3.0 | 5268 | 0.0602 | 0.9370 | 0.9509 | 0.9439 | 0.9864 |
61
 
62
 
63
  ### Framework versions
64
 
65
+ - Transformers 4.31.0
66
+ - Pytorch 2.0.1+cu117
67
+ - Datasets 2.18.0
68
  - Tokenizers 0.13.3