--- library_name: transformers license: apache-2.0 base_model: BSC-LT/roberta-base-bne-capitel-ner tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.8599099099099099 - name: Recall type: recall value: 0.8772977941176471 - name: F1 type: f1 value: 0.8685168334849864 - name: Accuracy type: accuracy value: 0.978701639744725 --- # bert-finetuned-ner This model is a fine-tuned version of [BSC-LT/roberta-base-bne-capitel-ner](https://huggingface.co/BSC-LT/roberta-base-bne-capitel-ner) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.0950 - Precision: 0.8599 - Recall: 0.8773 - F1: 0.8685 - Accuracy: 0.9787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1045 | 1.0 | 521 | 0.0932 | 0.8593 | 0.8704 | 0.8648 | 0.9764 | | 0.0343 | 2.0 | 1042 | 0.0870 | 0.8616 | 0.8757 | 0.8686 | 0.9781 | | 0.019 | 3.0 | 1563 | 0.0950 | 0.8599 | 0.8773 | 0.8685 | 0.9787 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 2.20.0 - Tokenizers 0.20.0