End of training
Browse files
README.md
CHANGED
@@ -26,16 +26,16 @@ model-index:
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
-
value: 0.
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
45 |
|
46 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2002 dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
-
- Accuracy: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
@@ -72,21 +72,22 @@ The following hyperparameters were used during training:
|
|
72 |
- train_batch_size: 16
|
73 |
- eval_batch_size: 16
|
74 |
- seed: 42
|
75 |
-
- optimizer:
|
76 |
- lr_scheduler_type: linear
|
77 |
-
- num_epochs:
|
78 |
|
79 |
### Training results
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
-
| 0.
|
84 |
-
| 0.
|
|
|
85 |
|
86 |
|
87 |
### Framework versions
|
88 |
|
89 |
-
- Transformers 4.
|
90 |
-
- Pytorch 2.
|
91 |
-
- Datasets 3.0
|
92 |
-
- Tokenizers 0.20.
|
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
+
value: 0.6718920889537003
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
+
value: 0.6659841002168152
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
+
value: 0.6689250499062368
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
+
value: 0.9377446143270542
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
45 |
|
46 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2002 dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.2240
|
49 |
+
- Precision: 0.6719
|
50 |
+
- Recall: 0.6660
|
51 |
+
- F1: 0.6689
|
52 |
+
- Accuracy: 0.9377
|
53 |
|
54 |
## Model description
|
55 |
|
|
|
72 |
- train_batch_size: 16
|
73 |
- eval_batch_size: 16
|
74 |
- seed: 42
|
75 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
76 |
- lr_scheduler_type: linear
|
77 |
+
- num_epochs: 3
|
78 |
|
79 |
### Training results
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
+
| 0.3562 | 1.0 | 521 | 0.2669 | 0.6139 | 0.5870 | 0.6001 | 0.9250 |
|
84 |
+
| 0.1976 | 2.0 | 1042 | 0.2408 | 0.6180 | 0.6697 | 0.6428 | 0.9303 |
|
85 |
+
| 0.1519 | 3.0 | 1563 | 0.2240 | 0.6719 | 0.6660 | 0.6689 | 0.9377 |
|
86 |
|
87 |
|
88 |
### Framework versions
|
89 |
|
90 |
+
- Transformers 4.46.2
|
91 |
+
- Pytorch 2.5.1+cu121
|
92 |
+
- Datasets 3.1.0
|
93 |
+
- Tokenizers 0.20.3
|
runs/Nov23_00-35-10_e01600b1e65a/events.out.tfevents.1732322132.e01600b1e65a.382.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ecca718cf6f921babdd6858e524751332a3a228eb67a6a5912341a6cf2a3f1fe
|
3 |
+
size 7783
|
runs/Nov23_00-35-10_e01600b1e65a/events.out.tfevents.1732322667.e01600b1e65a.382.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fad1257f3105ecf0d73a0cb232027372c0ee0bbd95993f29d53e50eec44ecd39
|
3 |
+
size 560
|