--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.6718920889537003 - name: Recall type: recall value: 0.6659841002168152 - name: F1 type: f1 value: 0.6689250499062368 - name: Accuracy type: accuracy value: 0.9377446143270542 --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.2240 - Precision: 0.6719 - Recall: 0.6660 - F1: 0.6689 - Accuracy: 0.9377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3562 | 1.0 | 521 | 0.2669 | 0.6139 | 0.5870 | 0.6001 | 0.9250 | | 0.1976 | 2.0 | 1042 | 0.2408 | 0.6180 | 0.6697 | 0.6428 | 0.9303 | | 0.1519 | 3.0 | 1563 | 0.2240 | 0.6719 | 0.6660 | 0.6689 | 0.9377 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3