ravisv73 commited on
Commit
9d223e4
1 Parent(s): 73122bf

Create handler.py

Browse files
Files changed (1) hide show
  1. handler.py +44 -0
handler.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, Any
2
+ import logging
3
+
4
+ from transformers import AutoModelForCausalLM, AutoTokenizer
5
+ from peft import PeftConfig, PeftModel
6
+ import torch.cuda
7
+
8
+
9
+ LOGGER = logging.getLogger(__name__)
10
+ logging.basicConfig(level=logging.INFO)
11
+ device = "cuda" if torch.cuda.is_available() else "cpu"
12
+
13
+
14
+ class EndpointHandler():
15
+ def __init__(self, path=""):
16
+ config = PeftConfig.from_pretrained(path)
17
+ model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, load_in_8bit=True, device_map='auto')
18
+ self.tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
19
+ # Load the Lora model
20
+ self.model = PeftModel.from_pretrained(model, path)
21
+
22
+ def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
23
+ """
24
+ Args:
25
+ data (Dict): The payload with the text prompt and generation parameters.
26
+ """
27
+ LOGGER.info(f"Received data: {data}")
28
+ # Get inputs
29
+ prompt = data.pop("inputs", None)
30
+ parameters = data.pop("parameters", None)
31
+ if prompt is None:
32
+ raise ValueError("Missing prompt.")
33
+ # Preprocess
34
+ input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(device)
35
+ # Forward
36
+ LOGGER.info(f"Start generation.")
37
+ if parameters is not None:
38
+ output = self.model.generate(input_ids=input_ids, **parameters)
39
+ else:
40
+ output = self.model.generate(input_ids=input_ids)
41
+ # Postprocess
42
+ prediction = self.tokenizer.decode(output[0])
43
+ LOGGER.info(f"Generated text: {prediction}")
44
+ return {"generated_text": prediction}