--- library_name: transformers language: - es license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - ylacombe/google-chilean-spanish metrics: - wer model-index: - name: Whisper Small ES-CL - Roberto Castro-Vexler results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR Chilean Spanish type: ylacombe/google-chilean-spanish args: 'config: es-cl, split: test' metrics: - name: Wer type: wer value: 5.930960948953752 --- # Whisper Small ES-CL - Roberto Castro-Vexler This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the OpenSLR Chilean Spanish dataset. It achieves the following results on the evaluation set: - Loss: 0.1552 - Wer: 5.9310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0038 | 8.6207 | 1000 | 0.1381 | 6.1975 | | 0.0002 | 17.2414 | 2000 | 0.1466 | 5.8510 | | 0.0001 | 25.8621 | 3000 | 0.1528 | 5.9709 | | 0.0001 | 34.4828 | 4000 | 0.1552 | 5.9310 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1