phpaiola commited on
Commit
043eaf7
1 Parent(s): bd9b1d8

Delete xtuner_config.py

Browse files
Files changed (1) hide show
  1. xtuner_config.py +0 -190
xtuner_config.py DELETED
@@ -1,190 +0,0 @@
1
- SYSTEM = 'xtuner.utils.SYSTEM_TEMPLATE.alpaca'
2
- accumulative_counts = 16
3
- alpaca_en = dict(
4
- dataset=dict(
5
- data_files=
6
- '/petrobr/parceirosbr/radiar/llama_test/train_ultracabrita.json',
7
- path='json',
8
- type='datasets.load_dataset'),
9
- dataset_map_fn='xtuner.dataset.map_fns.ultracabrita_map_fn',
10
- max_length=4096,
11
- pack_to_max_length=True,
12
- remove_unused_columns=True,
13
- shuffle_before_pack=True,
14
- template_map_fn=dict(
15
- template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
16
- type='xtuner.dataset.map_fns.template_map_fn_factory'),
17
- tokenizer=dict(
18
- padding_side='right',
19
- pretrained_model_name_or_path=
20
- '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--internlm--internlm2-chat-1_8b/snapshots/ecccbb5c87079ad84e5788baa55dd6e21a9c614d',
21
- trust_remote_code=True,
22
- type='transformers.AutoTokenizer.from_pretrained'),
23
- type='xtuner.dataset.process_hf_dataset',
24
- use_varlen_attn=False)
25
- alpaca_en_path = '/petrobr/parceirosbr/radiar/llama_test/train_ultracabrita.json'
26
- batch_size = 1
27
- betas = (
28
- 0.9,
29
- 0.999,
30
- )
31
- custom_hooks = [
32
- dict(
33
- tokenizer=dict(
34
- padding_side='right',
35
- pretrained_model_name_or_path=
36
- '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--internlm--internlm2-chat-1_8b/snapshots/ecccbb5c87079ad84e5788baa55dd6e21a9c614d',
37
- trust_remote_code=True,
38
- type='transformers.AutoTokenizer.from_pretrained'),
39
- type='xtuner.engine.hooks.DatasetInfoHook'),
40
- dict(
41
- evaluation_inputs=[
42
- 'O que é um bode?',
43
- 'Qual a capital da França?',
44
- 'Você pode me explicar o Teorema de Pitágoras com um exemplo, por favor?',
45
- 'Olá, tudo bem? Estou procurando livros de ficção científica para ler, você teria sugestões para mim?',
46
- ],
47
- every_n_iters=500,
48
- prompt_template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
49
- system='xtuner.utils.SYSTEM_TEMPLATE.alpaca',
50
- tokenizer=dict(
51
- padding_side='right',
52
- pretrained_model_name_or_path=
53
- '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--internlm--internlm2-chat-1_8b/snapshots/ecccbb5c87079ad84e5788baa55dd6e21a9c614d',
54
- trust_remote_code=True,
55
- type='transformers.AutoTokenizer.from_pretrained'),
56
- type='xtuner.engine.hooks.EvaluateChatHook'),
57
- ]
58
- dataloader_num_workers = 0
59
- default_hooks = dict(
60
- checkpoint=dict(
61
- by_epoch=False,
62
- interval=500,
63
- max_keep_ckpts=2,
64
- type='mmengine.hooks.CheckpointHook'),
65
- logger=dict(
66
- interval=10,
67
- log_metric_by_epoch=False,
68
- type='mmengine.hooks.LoggerHook'),
69
- param_scheduler=dict(type='mmengine.hooks.ParamSchedulerHook'),
70
- sampler_seed=dict(type='mmengine.hooks.DistSamplerSeedHook'),
71
- timer=dict(type='mmengine.hooks.IterTimerHook'))
72
- env_cfg = dict(
73
- cudnn_benchmark=False,
74
- dist_cfg=dict(backend='nccl'),
75
- mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
76
- evaluation_freq = 500
77
- evaluation_inputs = [
78
- 'O que é um bode?',
79
- 'Qual a capital da França?',
80
- 'Você pode me explicar o Teorema de Pitágoras com um exemplo, por favor?',
81
- 'Olá, tudo bem? Estou procurando livros de ficção científica para ler, você teria sugestões para mim?',
82
- ]
83
- launcher = 'pytorch'
84
- load_from = None
85
- log_level = 'INFO'
86
- log_processor = dict(by_epoch=False)
87
- lr = 2e-05
88
- max_epochs = 3
89
- max_length = 4096
90
- max_norm = 1
91
- model = dict(
92
- llm=dict(
93
- pretrained_model_name_or_path=
94
- '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--internlm--internlm2-chat-1_8b/snapshots/ecccbb5c87079ad84e5788baa55dd6e21a9c614d',
95
- trust_remote_code=True,
96
- type='transformers.AutoModelForCausalLM.from_pretrained'),
97
- type='xtuner.model.SupervisedFinetune',
98
- use_varlen_attn=False)
99
- optim_type = 'torch.optim.AdamW'
100
- optim_wrapper = dict(
101
- optimizer=dict(
102
- betas=(
103
- 0.9,
104
- 0.999,
105
- ),
106
- lr=2e-05,
107
- type='torch.optim.AdamW',
108
- weight_decay=0),
109
- type='DeepSpeedOptimWrapper')
110
- pack_to_max_length = True
111
- param_scheduler = [
112
- dict(
113
- begin=0,
114
- by_epoch=True,
115
- convert_to_iter_based=True,
116
- end=0.09,
117
- start_factor=1e-05,
118
- type='mmengine.optim.LinearLR'),
119
- dict(
120
- begin=0.09,
121
- by_epoch=True,
122
- convert_to_iter_based=True,
123
- end=3,
124
- eta_min=0.0,
125
- type='mmengine.optim.CosineAnnealingLR'),
126
- ]
127
- pretrained_model_name_or_path = '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--internlm--internlm2-chat-1_8b/snapshots/ecccbb5c87079ad84e5788baa55dd6e21a9c614d'
128
- prompt_template = 'xtuner.utils.PROMPT_TEMPLATE.internlm2_chat'
129
- randomness = dict(deterministic=False, seed=None)
130
- resume = False
131
- runner_type = 'FlexibleRunner'
132
- save_steps = 500
133
- save_total_limit = 2
134
- strategy = dict(
135
- config=dict(
136
- bf16=dict(enabled=False),
137
- fp16=dict(enabled=True, initial_scale_power=16),
138
- gradient_accumulation_steps='auto',
139
- gradient_clipping='auto',
140
- train_micro_batch_size_per_gpu='auto',
141
- zero_allow_untested_optimizer=True,
142
- zero_force_ds_cpu_optimizer=False,
143
- zero_optimization=dict(overlap_comm=True, stage=2)),
144
- exclude_frozen_parameters=True,
145
- gradient_accumulation_steps=16,
146
- gradient_clipping=1,
147
- sequence_parallel_size=1,
148
- train_micro_batch_size_per_gpu=1,
149
- type='xtuner.engine.DeepSpeedStrategy')
150
- tokenizer = dict(
151
- padding_side='right',
152
- pretrained_model_name_or_path=
153
- '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--internlm--internlm2-chat-1_8b/snapshots/ecccbb5c87079ad84e5788baa55dd6e21a9c614d',
154
- trust_remote_code=True,
155
- type='transformers.AutoTokenizer.from_pretrained')
156
- train_cfg = dict(max_epochs=3, type='xtuner.engine.runner.TrainLoop')
157
- train_dataloader = dict(
158
- batch_size=1,
159
- collate_fn=dict(
160
- type='xtuner.dataset.collate_fns.default_collate_fn',
161
- use_varlen_attn=False),
162
- dataset=dict(
163
- dataset=dict(
164
- data_files=
165
- '/petrobr/parceirosbr/radiar/llama_test/train_ultracabrita.json',
166
- path='json',
167
- type='datasets.load_dataset'),
168
- dataset_map_fn='xtuner.dataset.map_fns.ultracabrita_map_fn',
169
- max_length=4096,
170
- pack_to_max_length=True,
171
- remove_unused_columns=True,
172
- shuffle_before_pack=True,
173
- template_map_fn=dict(
174
- template='xtuner.utils.PROMPT_TEMPLATE.internlm2_chat',
175
- type='xtuner.dataset.map_fns.template_map_fn_factory'),
176
- tokenizer=dict(
177
- padding_side='right',
178
- pretrained_model_name_or_path=
179
- '/petrobr/parceirosbr/home/luis.afonso/.cache/huggingface/hub/models--internlm--internlm2-chat-1_8b/snapshots/ecccbb5c87079ad84e5788baa55dd6e21a9c614d',
180
- trust_remote_code=True,
181
- type='transformers.AutoTokenizer.from_pretrained'),
182
- type='xtuner.dataset.process_hf_dataset',
183
- use_varlen_attn=False),
184
- num_workers=0,
185
- sampler=dict(shuffle=True, type='mmengine.dataset.DefaultSampler'))
186
- use_varlen_attn = False
187
- visualizer = None
188
- warmup_ratio = 0.03
189
- weight_decay = 0
190
- work_dir = './work_dirs/internlm2_chat_1_8b_full_ultracabrita'