File size: 6,910 Bytes
c3b58fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import math
from typing import Tuple, Optional

import torch
from torch import nn

from .attentions import MultiHeadAttention, FFN
from .norms import LayerNorm, WN
from .utils import sequence_mask


class Encoder(nn.Module):
    def __init__(
        self,
        hidden_channels: int,
        filter_channels: int,
        n_heads: int,
        n_layers: int,
        kernel_size: int = 1,
        p_dropout: float = 0.0,
        window_size: int = 10,
    ):
        super(Encoder, self).__init__()

        self.hidden_channels = hidden_channels
        self.filter_channels = filter_channels
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.kernel_size = kernel_size
        self.p_dropout = p_dropout
        self.window_size = window_size

        self.drop = nn.Dropout(p_dropout)
        self.attn_layers = nn.ModuleList()
        self.norm_layers_1 = nn.ModuleList()
        self.ffn_layers = nn.ModuleList()
        self.norm_layers_2 = nn.ModuleList()

        for _ in range(self.n_layers):
            self.attn_layers.append(
                MultiHeadAttention(
                    hidden_channels,
                    hidden_channels,
                    n_heads,
                    p_dropout=p_dropout,
                    window_size=window_size,
                )
            )
            self.norm_layers_1.append(LayerNorm(hidden_channels))
            self.ffn_layers.append(
                FFN(
                    hidden_channels,
                    hidden_channels,
                    filter_channels,
                    kernel_size,
                    p_dropout=p_dropout,
                )
            )
            self.norm_layers_2.append(LayerNorm(hidden_channels))

    def __call__(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
        return super().__call__(x, x_mask)

    def forward(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
        attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
        x = x * x_mask
        for attn, norm1, ffn, norm2 in zip(
            self.attn_layers,
            self.norm_layers_1,
            self.ffn_layers,
            self.norm_layers_2,
        ):
            y = attn(x, x, attn_mask)
            y = self.drop(y)
            x = norm1(x + y)

            y = ffn(x, x_mask)
            y = self.drop(y)
            x = norm2(x + y)
        x = x * x_mask
        return x


class TextEncoder(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        hidden_channels: int,
        filter_channels: int,
        n_heads: int,
        n_layers: int,
        kernel_size: int,
        p_dropout: float,
        f0: bool = True,
    ):
        super(TextEncoder, self).__init__()

        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.filter_channels = filter_channels
        self.n_heads = n_heads
        self.n_layers = n_layers
        self.kernel_size = kernel_size
        self.p_dropout = float(p_dropout)

        self.emb_phone = nn.Linear(in_channels, hidden_channels)
        self.lrelu = nn.LeakyReLU(0.1, inplace=True)
        if f0 == True:
            self.emb_pitch = nn.Embedding(256, hidden_channels)  # pitch 256
        self.encoder = Encoder(
            hidden_channels,
            filter_channels,
            n_heads,
            n_layers,
            kernel_size,
            float(p_dropout),
        )
        self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)

    def __call__(
        self,
        phone: torch.Tensor,
        pitch: torch.Tensor,
        lengths: torch.Tensor,
        skip_head: Optional[int] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        return super().__call__(
            phone,
            pitch,
            lengths,
            skip_head=skip_head,
        )

    def forward(
        self,
        phone: torch.Tensor,
        pitch: torch.Tensor,
        lengths: torch.Tensor,
        skip_head: Optional[int] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        x = self.emb_phone(phone)
        if pitch is not None:
            x += self.emb_pitch(pitch)
        x = x * math.sqrt(self.hidden_channels)  # [b, t, h]
        x = self.lrelu(x)
        x = torch.transpose(x, 1, -1)  # [b, h, t]
        x_mask = torch.unsqueeze(
            sequence_mask(lengths, x.size(2)),
            1,
        ).to(x.dtype)
        x = self.encoder(x * x_mask, x_mask)
        if skip_head is not None:
            head = int(skip_head)
            x = x[:, :, head:]
            x_mask = x_mask[:, :, head:]
        stats: torch.Tensor = self.proj(x) * x_mask
        m, logs = torch.split(stats, self.out_channels, dim=1)
        return m, logs, x_mask


class PosteriorEncoder(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        hidden_channels: int,
        kernel_size: int,
        dilation_rate: int,
        n_layers: int,
        gin_channels=0,
    ):
        super(PosteriorEncoder, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.gin_channels = gin_channels

        self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
        self.enc = WN(
            hidden_channels,
            kernel_size,
            dilation_rate,
            n_layers,
            gin_channels=gin_channels,
        )
        self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)

    def __call__(
        self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        return super().__call__(x, x_lengths, g=g)

    def forward(
        self, x: torch.Tensor, x_lengths: torch.Tensor, g: Optional[torch.Tensor] = None
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        x_mask = torch.unsqueeze(
            sequence_mask(x_lengths, x.size(2)),
            1,
        ).to(x.dtype)
        x = self.pre(x) * x_mask
        x = self.enc(x, x_mask, g=g)
        stats = self.proj(x) * x_mask
        m, logs = torch.split(stats, self.out_channels, dim=1)
        z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
        return z, m, logs, x_mask

    def remove_weight_norm(self):
        self.enc.remove_weight_norm()

    def __prepare_scriptable__(self):
        for hook in self.enc._forward_pre_hooks.values():
            if (
                hook.__module__ == "torch.nn.utils.weight_norm"
                and hook.__class__.__name__ == "WeightNorm"
            ):
                torch.nn.utils.remove_weight_norm(self.enc)
        return self