File size: 11,072 Bytes
c3b58fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
from typing import Optional, List, Tuple

import torch
from torch import nn
from torch.nn import Conv1d
from torch.nn import functional as F
from torch.nn.utils import remove_weight_norm, weight_norm

from .norms import WN
from .utils import (
    get_padding,
    call_weight_data_normal_if_Conv,
)

LRELU_SLOPE = 0.1


class ResBlock1(torch.nn.Module):
    def __init__(

        self,

        channels: int,

        kernel_size: int = 3,

        dilation: List[int] = (1, 3, 5),

    ):
        super(ResBlock1, self).__init__()

        self.convs1 = nn.ModuleList()
        for d in dilation:
            self.convs1.append(
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=d,
                        padding=get_padding(kernel_size, d),
                    )
                ),
            )
        self.convs1.apply(call_weight_data_normal_if_Conv)

        self.convs2 = nn.ModuleList()
        for _ in dilation:
            self.convs2.append(
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    )
                ),
            )
        self.convs2.apply(call_weight_data_normal_if_Conv)
        self.lrelu_slope = LRELU_SLOPE

    def __call__(

        self,

        x: torch.Tensor,

        x_mask: Optional[torch.Tensor] = None,

    ) -> torch.Tensor:
        return super().__call__(x, x_mask=x_mask)

    def forward(

        self,

        x: torch.Tensor,

        x_mask: Optional[torch.Tensor] = None,

    ) -> torch.Tensor:
        for c1, c2 in zip(self.convs1, self.convs2):
            xt = F.leaky_relu(x, self.lrelu_slope)
            if x_mask is not None:
                xt = xt * x_mask
            xt = c1(xt)
            xt = F.leaky_relu(xt, self.lrelu_slope)
            if x_mask is not None:
                xt = xt * x_mask
            xt = c2(xt)
            x = xt + x
        if x_mask is not None:
            x = x * x_mask
        return x

    def remove_weight_norm(self):
        for l in self.convs1:
            remove_weight_norm(l)
        for l in self.convs2:
            remove_weight_norm(l)

    def __prepare_scriptable__(self):
        for l in self.convs1:
            for hook in l._forward_pre_hooks.values():
                if (
                    hook.__module__ == "torch.nn.utils.weight_norm"
                    and hook.__class__.__name__ == "WeightNorm"
                ):
                    torch.nn.utils.remove_weight_norm(l)
        for l in self.convs2:
            for hook in l._forward_pre_hooks.values():
                if (
                    hook.__module__ == "torch.nn.utils.weight_norm"
                    and hook.__class__.__name__ == "WeightNorm"
                ):
                    torch.nn.utils.remove_weight_norm(l)
        return self


class ResBlock2(torch.nn.Module):
    """

    Actually this module is not used currently

    because all configs specified "resblock": "1"

    """

    def __init__(

        self,

        channels: int,

        kernel_size=3,

        dilation: List[int] = (1, 3),

    ):
        super(ResBlock2, self).__init__()
        self.convs = nn.ModuleList()
        for d in dilation:
            self.convs.append(
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=d,
                        padding=get_padding(kernel_size, d),
                    )
                ),
            )
        self.convs.apply(call_weight_data_normal_if_Conv)
        self.lrelu_slope = LRELU_SLOPE

    def __call__(

        self,

        x: torch.Tensor,

        x_mask: Optional[torch.Tensor] = None,

    ) -> torch.Tensor:
        return super().__call__(x, x_mask=x_mask)

    def forward(

        self,

        x: torch.Tensor,

        x_mask: Optional[torch.Tensor] = None,

    ) -> torch.Tensor:
        for c in self.convs:
            xt = F.leaky_relu(x, self.lrelu_slope)
            if x_mask is not None:
                xt = xt * x_mask
            xt = c(xt)
            x = xt + x
        if x_mask is not None:
            x = x * x_mask
        return x

    def remove_weight_norm(self):
        for l in self.convs:
            remove_weight_norm(l)

    def __prepare_scriptable__(self):
        for l in self.convs:
            for hook in l._forward_pre_hooks.values():
                if (
                    hook.__module__ == "torch.nn.utils.weight_norm"
                    and hook.__class__.__name__ == "WeightNorm"
                ):
                    torch.nn.utils.remove_weight_norm(l)
        return self


class ResidualCouplingLayer(nn.Module):
    def __init__(

        self,

        channels: int,

        hidden_channels: int,

        kernel_size: int,

        dilation_rate: int,

        n_layers: int,

        p_dropout: int = 0,

        gin_channels: int = 0,

        mean_only: bool = False,

    ):
        assert channels % 2 == 0, "channels should be divisible by 2"
        super(ResidualCouplingLayer, self).__init__()
        self.channels = channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.half_channels = channels // 2
        self.mean_only = mean_only

        self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
        self.enc = WN(
            hidden_channels,
            kernel_size,
            dilation_rate,
            n_layers,
            p_dropout=float(p_dropout),
            gin_channels=gin_channels,
        )
        self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
        self.post.weight.data.zero_()
        self.post.bias.data.zero_()

    def __call__(

        self,

        x: torch.Tensor,

        x_mask: torch.Tensor,

        g: Optional[torch.Tensor] = None,

        reverse: bool = False,

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        return super().__call__(x, x_mask, g=g, reverse=reverse)

    def forward(

        self,

        x: torch.Tensor,

        x_mask: torch.Tensor,

        g: Optional[torch.Tensor] = None,

        reverse: bool = False,

    ) -> Tuple[torch.Tensor, torch.Tensor]:
        x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
        h = self.pre(x0) * x_mask
        h = self.enc(h, x_mask, g=g)
        stats = self.post(h) * x_mask
        if not self.mean_only:
            m, logs = torch.split(stats, [self.half_channels] * 2, 1)
        else:
            m = stats
            logs = torch.zeros_like(m)

        if not reverse:
            x1 = m + x1 * torch.exp(logs) * x_mask
            x = torch.cat([x0, x1], 1)
            logdet = torch.sum(logs, [1, 2])
            return x, logdet

        x1 = (x1 - m) * torch.exp(-logs) * x_mask
        x = torch.cat([x0, x1], 1)
        return x, torch.zeros([1])

    def remove_weight_norm(self):
        self.enc.remove_weight_norm()

    def __prepare_scriptable__(self):
        for hook in self.enc._forward_pre_hooks.values():
            if (
                hook.__module__ == "torch.nn.utils.weight_norm"
                and hook.__class__.__name__ == "WeightNorm"
            ):
                torch.nn.utils.remove_weight_norm(self.enc)
        return self


class ResidualCouplingBlock(nn.Module):
    class Flip(nn.Module):
        """

        torch.jit.script() Compiled functions

        can't take variable number of arguments or

        use keyword-only arguments with defaults

        """

        def forward(

            self,

            x: torch.Tensor,

            x_mask: torch.Tensor,

            g: Optional[torch.Tensor] = None,

            reverse: bool = False,

        ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
            x = torch.flip(x, [1])
            if not reverse:
                logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
                return x, logdet
            else:
                return x, torch.zeros([1], device=x.device)

    def __init__(

        self,

        channels: int,

        hidden_channels: int,

        kernel_size: int,

        dilation_rate: int,

        n_layers: int,

        n_flows: int = 4,

        gin_channels: int = 0,

    ):
        super(ResidualCouplingBlock, self).__init__()
        self.channels = channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.n_flows = n_flows
        self.gin_channels = gin_channels

        self.flows = nn.ModuleList()
        for _ in range(n_flows):
            self.flows.append(
                ResidualCouplingLayer(
                    channels,
                    hidden_channels,
                    kernel_size,
                    dilation_rate,
                    n_layers,
                    gin_channels=gin_channels,
                    mean_only=True,
                )
            )
            self.flows.append(self.Flip())

    def __call__(

        self,

        x: torch.Tensor,

        x_mask: torch.Tensor,

        g: Optional[torch.Tensor] = None,

        reverse: bool = False,

    ) -> torch.Tensor:
        return super().__call__(x, x_mask, g=g, reverse=reverse)

    def forward(

        self,

        x: torch.Tensor,

        x_mask: torch.Tensor,

        g: Optional[torch.Tensor] = None,

        reverse: bool = False,

    ) -> torch.Tensor:
        if not reverse:
            for flow in self.flows:
                x, _ = flow(x, x_mask, g=g, reverse=reverse)
        else:
            for flow in reversed(self.flows):
                x, _ = flow.forward(x, x_mask, g=g, reverse=reverse)
        return x

    def remove_weight_norm(self):
        for i in range(self.n_flows):
            self.flows[i * 2].remove_weight_norm()

    def __prepare_scriptable__(self):
        for i in range(self.n_flows):
            for hook in self.flows[i * 2]._forward_pre_hooks.values():
                if (
                    hook.__module__ == "torch.nn.utils.weight_norm"
                    and hook.__class__.__name__ == "WeightNorm"
                ):
                    torch.nn.utils.remove_weight_norm(self.flows[i * 2])
        return self