|
import torch |
|
import intel_extension_for_pytorch as ipex |
|
|
|
|
|
|
|
original_torch_bmm = torch.bmm |
|
|
|
|
|
def torch_bmm(input, mat2, *, out=None): |
|
if input.dtype != mat2.dtype: |
|
mat2 = mat2.to(input.dtype) |
|
|
|
|
|
batch_size_attention, input_tokens, mat2_shape = ( |
|
input.shape[0], |
|
input.shape[1], |
|
mat2.shape[2], |
|
) |
|
block_multiply = input.element_size() |
|
slice_block_size = input_tokens * mat2_shape / 1024 / 1024 * block_multiply |
|
block_size = batch_size_attention * slice_block_size |
|
|
|
split_slice_size = batch_size_attention |
|
if block_size > 4: |
|
do_split = True |
|
|
|
while (split_slice_size * slice_block_size) > 4: |
|
split_slice_size = split_slice_size // 2 |
|
if split_slice_size <= 1: |
|
split_slice_size = 1 |
|
break |
|
else: |
|
do_split = False |
|
|
|
split_2_slice_size = input_tokens |
|
if split_slice_size * slice_block_size > 4: |
|
slice_block_size2 = split_slice_size * mat2_shape / 1024 / 1024 * block_multiply |
|
do_split_2 = True |
|
|
|
while (split_2_slice_size * slice_block_size2) > 4: |
|
split_2_slice_size = split_2_slice_size // 2 |
|
if split_2_slice_size <= 1: |
|
split_2_slice_size = 1 |
|
break |
|
else: |
|
do_split_2 = False |
|
|
|
if do_split: |
|
hidden_states = torch.zeros( |
|
input.shape[0], |
|
input.shape[1], |
|
mat2.shape[2], |
|
device=input.device, |
|
dtype=input.dtype, |
|
) |
|
for i in range(batch_size_attention // split_slice_size): |
|
start_idx = i * split_slice_size |
|
end_idx = (i + 1) * split_slice_size |
|
if do_split_2: |
|
for i2 in range( |
|
input_tokens // split_2_slice_size |
|
): |
|
start_idx_2 = i2 * split_2_slice_size |
|
end_idx_2 = (i2 + 1) * split_2_slice_size |
|
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = ( |
|
original_torch_bmm( |
|
input[start_idx:end_idx, start_idx_2:end_idx_2], |
|
mat2[start_idx:end_idx, start_idx_2:end_idx_2], |
|
out=out, |
|
) |
|
) |
|
else: |
|
hidden_states[start_idx:end_idx] = original_torch_bmm( |
|
input[start_idx:end_idx], mat2[start_idx:end_idx], out=out |
|
) |
|
else: |
|
return original_torch_bmm(input, mat2, out=out) |
|
return hidden_states |
|
|
|
|
|
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention |
|
|
|
|
|
def scaled_dot_product_attention( |
|
query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False |
|
): |
|
|
|
if len(query.shape) == 3: |
|
batch_size_attention, query_tokens, shape_four = query.shape |
|
shape_one = 1 |
|
no_shape_one = True |
|
else: |
|
shape_one, batch_size_attention, query_tokens, shape_four = query.shape |
|
no_shape_one = False |
|
|
|
block_multiply = query.element_size() |
|
slice_block_size = ( |
|
shape_one * query_tokens * shape_four / 1024 / 1024 * block_multiply |
|
) |
|
block_size = batch_size_attention * slice_block_size |
|
|
|
split_slice_size = batch_size_attention |
|
if block_size > 4: |
|
do_split = True |
|
|
|
while (split_slice_size * slice_block_size) > 4: |
|
split_slice_size = split_slice_size // 2 |
|
if split_slice_size <= 1: |
|
split_slice_size = 1 |
|
break |
|
else: |
|
do_split = False |
|
|
|
split_2_slice_size = query_tokens |
|
if split_slice_size * slice_block_size > 4: |
|
slice_block_size2 = ( |
|
shape_one * split_slice_size * shape_four / 1024 / 1024 * block_multiply |
|
) |
|
do_split_2 = True |
|
|
|
while (split_2_slice_size * slice_block_size2) > 4: |
|
split_2_slice_size = split_2_slice_size // 2 |
|
if split_2_slice_size <= 1: |
|
split_2_slice_size = 1 |
|
break |
|
else: |
|
do_split_2 = False |
|
|
|
if do_split: |
|
hidden_states = torch.zeros(query.shape, device=query.device, dtype=query.dtype) |
|
for i in range(batch_size_attention // split_slice_size): |
|
start_idx = i * split_slice_size |
|
end_idx = (i + 1) * split_slice_size |
|
if do_split_2: |
|
for i2 in range( |
|
query_tokens // split_2_slice_size |
|
): |
|
start_idx_2 = i2 * split_2_slice_size |
|
end_idx_2 = (i2 + 1) * split_2_slice_size |
|
if no_shape_one: |
|
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = ( |
|
original_scaled_dot_product_attention( |
|
query[start_idx:end_idx, start_idx_2:end_idx_2], |
|
key[start_idx:end_idx, start_idx_2:end_idx_2], |
|
value[start_idx:end_idx, start_idx_2:end_idx_2], |
|
attn_mask=( |
|
attn_mask[start_idx:end_idx, start_idx_2:end_idx_2] |
|
if attn_mask is not None |
|
else attn_mask |
|
), |
|
dropout_p=dropout_p, |
|
is_causal=is_causal, |
|
) |
|
) |
|
else: |
|
hidden_states[:, start_idx:end_idx, start_idx_2:end_idx_2] = ( |
|
original_scaled_dot_product_attention( |
|
query[:, start_idx:end_idx, start_idx_2:end_idx_2], |
|
key[:, start_idx:end_idx, start_idx_2:end_idx_2], |
|
value[:, start_idx:end_idx, start_idx_2:end_idx_2], |
|
attn_mask=( |
|
attn_mask[ |
|
:, start_idx:end_idx, start_idx_2:end_idx_2 |
|
] |
|
if attn_mask is not None |
|
else attn_mask |
|
), |
|
dropout_p=dropout_p, |
|
is_causal=is_causal, |
|
) |
|
) |
|
else: |
|
if no_shape_one: |
|
hidden_states[start_idx:end_idx] = ( |
|
original_scaled_dot_product_attention( |
|
query[start_idx:end_idx], |
|
key[start_idx:end_idx], |
|
value[start_idx:end_idx], |
|
attn_mask=( |
|
attn_mask[start_idx:end_idx] |
|
if attn_mask is not None |
|
else attn_mask |
|
), |
|
dropout_p=dropout_p, |
|
is_causal=is_causal, |
|
) |
|
) |
|
else: |
|
hidden_states[:, start_idx:end_idx] = ( |
|
original_scaled_dot_product_attention( |
|
query[:, start_idx:end_idx], |
|
key[:, start_idx:end_idx], |
|
value[:, start_idx:end_idx], |
|
attn_mask=( |
|
attn_mask[:, start_idx:end_idx] |
|
if attn_mask is not None |
|
else attn_mask |
|
), |
|
dropout_p=dropout_p, |
|
is_causal=is_causal, |
|
) |
|
) |
|
else: |
|
return original_scaled_dot_product_attention( |
|
query, |
|
key, |
|
value, |
|
attn_mask=attn_mask, |
|
dropout_p=dropout_p, |
|
is_causal=is_causal, |
|
) |
|
return hidden_states |
|
|
|
|
|
def attention_init(): |
|
|
|
torch.bmm = torch_bmm |
|
torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention |
|
|