easyGUI / rvc /layers /attentions.py
Blane187's picture
Upload 39 files
c3b58fa verified
import math
from typing import Optional
import torch
from torch import nn
from torch.nn import functional as F
class MultiHeadAttention(nn.Module):
def __init__(
self,
channels: int,
out_channels: int,
n_heads: int,
p_dropout: float = 0.0,
window_size: Optional[int] = None,
heads_share: bool = True,
block_length: Optional[int] = None,
proximal_bias: bool = False,
proximal_init: bool = False,
):
super(MultiHeadAttention, self).__init__()
assert channels % n_heads == 0
self.channels = channels
self.out_channels = out_channels
self.n_heads = n_heads
self.p_dropout = p_dropout
self.window_size = window_size
self.heads_share = heads_share
self.block_length = block_length
self.proximal_bias = proximal_bias
self.proximal_init = proximal_init
self.attn = None
self.k_channels = channels // n_heads
self.conv_q = nn.Conv1d(channels, channels, 1)
self.conv_k = nn.Conv1d(channels, channels, 1)
self.conv_v = nn.Conv1d(channels, channels, 1)
self.conv_o = nn.Conv1d(channels, out_channels, 1)
self.drop = nn.Dropout(p_dropout)
if window_size is not None:
n_heads_rel = 1 if heads_share else n_heads
rel_stddev = self.k_channels**-0.5
self.emb_rel_k = nn.Parameter(
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
* rel_stddev
)
self.emb_rel_v = nn.Parameter(
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
* rel_stddev
)
nn.init.xavier_uniform_(self.conv_q.weight)
nn.init.xavier_uniform_(self.conv_k.weight)
nn.init.xavier_uniform_(self.conv_v.weight)
if proximal_init:
with torch.no_grad():
self.conv_k.weight.copy_(self.conv_q.weight)
self.conv_k.bias.copy_(self.conv_q.bias)
def __call__(
self,
x: torch.Tensor,
c: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
return super().__call__(x, c, attn_mask=attn_mask)
def forward(
self,
x: torch.Tensor,
c: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
q = self.conv_q(x)
k = self.conv_k(c)
v = self.conv_v(c)
x, _ = self._attention(q, k, v, mask=attn_mask)
x = self.conv_o(x)
return x
def _attention(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: Optional[torch.Tensor] = None,
):
# reshape [b, d, t] -> [b, n_h, t, d_k]
b, d, t_s = key.size()
t_t = query.size(2)
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
if self.window_size is not None:
assert (
t_s == t_t
), "Relative attention is only available for self-attention."
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
rel_logits = self._matmul_with_relative_keys(
query / math.sqrt(self.k_channels), key_relative_embeddings
)
scores_local = self._relative_position_to_absolute_position(rel_logits)
scores = scores + scores_local
if self.proximal_bias:
assert t_s == t_t, "Proximal bias is only available for self-attention."
scores = scores + self._attention_bias_proximal(t_s).to(
device=scores.device, dtype=scores.dtype
)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e4)
if self.block_length is not None:
assert (
t_s == t_t
), "Local attention is only available for self-attention."
block_mask = (
torch.ones_like(scores)
.triu(-self.block_length)
.tril(self.block_length)
)
scores = scores.masked_fill(block_mask == 0, -1e4)
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
p_attn = self.drop(p_attn)
output = torch.matmul(p_attn, value)
if self.window_size is not None:
relative_weights = self._absolute_position_to_relative_position(p_attn)
value_relative_embeddings = self._get_relative_embeddings(
self.emb_rel_v, t_s
)
output = output + self._matmul_with_relative_values(
relative_weights, value_relative_embeddings
)
output = (
output.transpose(2, 3).contiguous().view(b, d, t_t)
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
return output, p_attn
def _matmul_with_relative_values(self, x, y):
"""
x: [b, h, l, m]
y: [h or 1, m, d]
ret: [b, h, l, d]
"""
ret = torch.matmul(x, y.unsqueeze(0))
return ret
def _matmul_with_relative_keys(self, x, y):
"""
x: [b, h, l, d]
y: [h or 1, m, d]
ret: [b, h, l, m]
"""
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
return ret
def _get_relative_embeddings(self, relative_embeddings, length: int):
# max_relative_position = 2 * self.window_size + 1
# Pad first before slice to avoid using cond ops.
pad_length: int = max(length - (self.window_size + 1), 0)
slice_start_position = max((self.window_size + 1) - length, 0)
slice_end_position = slice_start_position + 2 * length - 1
if pad_length > 0:
padded_relative_embeddings = F.pad(
relative_embeddings,
[0, 0, pad_length, pad_length, 0, 0],
)
else:
padded_relative_embeddings = relative_embeddings
used_relative_embeddings = padded_relative_embeddings[
:, slice_start_position:slice_end_position
]
return used_relative_embeddings
def _relative_position_to_absolute_position(self, x):
"""
x: [b, h, l, 2*l-1]
ret: [b, h, l, l]
"""
batch, heads, length, _ = x.size()
# Concat columns of pad to shift from relative to absolute indexing.
x = F.pad(
x,
[0, 1, 0, 0, 0, 0, 0, 0],
)
# Concat extra elements so to add up to shape (len+1, 2*len-1).
x_flat = x.view([batch, heads, length * 2 * length])
x_flat = F.pad(x_flat, [0, length - 1, 0, 0, 0, 0])
# Reshape and slice out the padded elements.
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
:, :, :length, length - 1 :
]
return x_final
def _absolute_position_to_relative_position(self, x):
"""
x: [b, h, l, l]
ret: [b, h, l, 2*l-1]
"""
batch, heads, length, _ = x.size()
# padd along column
x = F.pad(x, [0, length - 1, 0, 0, 0, 0, 0, 0])
x_flat = x.view([batch, heads, (length**2) + (length * (length - 1))])
# add 0's in the beginning that will skew the elements after reshape
x_flat = F.pad(x_flat, [length, 0, 0, 0, 0, 0])
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
return x_final
def _attention_bias_proximal(self, length: int):
"""Bias for self-attention to encourage attention to close positions.
Args:
length: an integer scalar.
Returns:
a Tensor with shape [1, 1, length, length]
"""
r = torch.arange(length, dtype=torch.float32)
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
class FFN(nn.Module):
"""
Feed-Forward Network
"""
def __init__(
self,
in_channels: int,
out_channels: int,
filter_channels: int,
kernel_size: int,
p_dropout: float = 0.0,
activation: Optional[str] = None,
causal: bool = False,
):
super(FFN, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.activation = activation
self.causal = causal
self.is_activation = True if activation == "gelu" else False
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
self.drop = nn.Dropout(p_dropout)
def __call__(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
return super().__call__(x, x_mask)
def forward(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
x = self.conv_1(self._padding(x, x_mask))
if self.is_activation:
x = x * torch.sigmoid(1.702 * x)
else:
x = torch.relu(x)
x = self.drop(x)
x = self.conv_2(self._padding(x, x_mask))
return x * x_mask
def _padding(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
if self.causal:
return self._causal_padding(x * x_mask)
return self._same_padding(x * x_mask)
def _causal_padding(self, x):
if self.kernel_size == 1:
return x
pad_l: int = self.kernel_size - 1
pad_r: int = 0
# padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(x, [pad_l, pad_r, 0, 0, 0, 0])
return x
def _same_padding(self, x):
if self.kernel_size == 1:
return x
pad_l: int = (self.kernel_size - 1) // 2
pad_r: int = self.kernel_size // 2
# padding = [[0, 0], [0, 0], [pad_l, pad_r]]
x = F.pad(x, [pad_l, pad_r, 0, 0, 0, 0])
return x