|
import math
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
out_channels: int,
|
|
n_heads: int,
|
|
p_dropout: float = 0.0,
|
|
window_size: Optional[int] = None,
|
|
heads_share: bool = True,
|
|
block_length: Optional[int] = None,
|
|
proximal_bias: bool = False,
|
|
proximal_init: bool = False,
|
|
):
|
|
super(MultiHeadAttention, self).__init__()
|
|
assert channels % n_heads == 0
|
|
|
|
self.channels = channels
|
|
self.out_channels = out_channels
|
|
self.n_heads = n_heads
|
|
self.p_dropout = p_dropout
|
|
self.window_size = window_size
|
|
self.heads_share = heads_share
|
|
self.block_length = block_length
|
|
self.proximal_bias = proximal_bias
|
|
self.proximal_init = proximal_init
|
|
self.attn = None
|
|
|
|
self.k_channels = channels // n_heads
|
|
self.conv_q = nn.Conv1d(channels, channels, 1)
|
|
self.conv_k = nn.Conv1d(channels, channels, 1)
|
|
self.conv_v = nn.Conv1d(channels, channels, 1)
|
|
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
|
self.drop = nn.Dropout(p_dropout)
|
|
|
|
if window_size is not None:
|
|
n_heads_rel = 1 if heads_share else n_heads
|
|
rel_stddev = self.k_channels**-0.5
|
|
self.emb_rel_k = nn.Parameter(
|
|
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
|
* rel_stddev
|
|
)
|
|
self.emb_rel_v = nn.Parameter(
|
|
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
|
* rel_stddev
|
|
)
|
|
|
|
nn.init.xavier_uniform_(self.conv_q.weight)
|
|
nn.init.xavier_uniform_(self.conv_k.weight)
|
|
nn.init.xavier_uniform_(self.conv_v.weight)
|
|
if proximal_init:
|
|
with torch.no_grad():
|
|
self.conv_k.weight.copy_(self.conv_q.weight)
|
|
self.conv_k.bias.copy_(self.conv_q.bias)
|
|
|
|
def __call__(
|
|
self,
|
|
x: torch.Tensor,
|
|
c: torch.Tensor,
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
return super().__call__(x, c, attn_mask=attn_mask)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
c: torch.Tensor,
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
q = self.conv_q(x)
|
|
k = self.conv_k(c)
|
|
v = self.conv_v(c)
|
|
|
|
x, _ = self._attention(q, k, v, mask=attn_mask)
|
|
|
|
x = self.conv_o(x)
|
|
return x
|
|
|
|
def _attention(
|
|
self,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
mask: Optional[torch.Tensor] = None,
|
|
):
|
|
|
|
b, d, t_s = key.size()
|
|
t_t = query.size(2)
|
|
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
|
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
|
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
|
|
|
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
|
if self.window_size is not None:
|
|
assert (
|
|
t_s == t_t
|
|
), "Relative attention is only available for self-attention."
|
|
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
|
rel_logits = self._matmul_with_relative_keys(
|
|
query / math.sqrt(self.k_channels), key_relative_embeddings
|
|
)
|
|
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
|
scores = scores + scores_local
|
|
if self.proximal_bias:
|
|
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
|
scores = scores + self._attention_bias_proximal(t_s).to(
|
|
device=scores.device, dtype=scores.dtype
|
|
)
|
|
if mask is not None:
|
|
scores = scores.masked_fill(mask == 0, -1e4)
|
|
if self.block_length is not None:
|
|
assert (
|
|
t_s == t_t
|
|
), "Local attention is only available for self-attention."
|
|
block_mask = (
|
|
torch.ones_like(scores)
|
|
.triu(-self.block_length)
|
|
.tril(self.block_length)
|
|
)
|
|
scores = scores.masked_fill(block_mask == 0, -1e4)
|
|
p_attn = F.softmax(scores, dim=-1)
|
|
p_attn = self.drop(p_attn)
|
|
output = torch.matmul(p_attn, value)
|
|
if self.window_size is not None:
|
|
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
|
value_relative_embeddings = self._get_relative_embeddings(
|
|
self.emb_rel_v, t_s
|
|
)
|
|
output = output + self._matmul_with_relative_values(
|
|
relative_weights, value_relative_embeddings
|
|
)
|
|
output = (
|
|
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
|
)
|
|
return output, p_attn
|
|
|
|
def _matmul_with_relative_values(self, x, y):
|
|
"""
|
|
x: [b, h, l, m]
|
|
y: [h or 1, m, d]
|
|
ret: [b, h, l, d]
|
|
"""
|
|
ret = torch.matmul(x, y.unsqueeze(0))
|
|
return ret
|
|
|
|
def _matmul_with_relative_keys(self, x, y):
|
|
"""
|
|
x: [b, h, l, d]
|
|
y: [h or 1, m, d]
|
|
ret: [b, h, l, m]
|
|
"""
|
|
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
|
return ret
|
|
|
|
def _get_relative_embeddings(self, relative_embeddings, length: int):
|
|
|
|
|
|
pad_length: int = max(length - (self.window_size + 1), 0)
|
|
slice_start_position = max((self.window_size + 1) - length, 0)
|
|
slice_end_position = slice_start_position + 2 * length - 1
|
|
if pad_length > 0:
|
|
padded_relative_embeddings = F.pad(
|
|
relative_embeddings,
|
|
[0, 0, pad_length, pad_length, 0, 0],
|
|
)
|
|
else:
|
|
padded_relative_embeddings = relative_embeddings
|
|
used_relative_embeddings = padded_relative_embeddings[
|
|
:, slice_start_position:slice_end_position
|
|
]
|
|
return used_relative_embeddings
|
|
|
|
def _relative_position_to_absolute_position(self, x):
|
|
"""
|
|
x: [b, h, l, 2*l-1]
|
|
ret: [b, h, l, l]
|
|
"""
|
|
batch, heads, length, _ = x.size()
|
|
|
|
x = F.pad(
|
|
x,
|
|
[0, 1, 0, 0, 0, 0, 0, 0],
|
|
)
|
|
|
|
|
|
x_flat = x.view([batch, heads, length * 2 * length])
|
|
x_flat = F.pad(x_flat, [0, length - 1, 0, 0, 0, 0])
|
|
|
|
|
|
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
|
:, :, :length, length - 1 :
|
|
]
|
|
return x_final
|
|
|
|
def _absolute_position_to_relative_position(self, x):
|
|
"""
|
|
x: [b, h, l, l]
|
|
ret: [b, h, l, 2*l-1]
|
|
"""
|
|
batch, heads, length, _ = x.size()
|
|
|
|
x = F.pad(x, [0, length - 1, 0, 0, 0, 0, 0, 0])
|
|
x_flat = x.view([batch, heads, (length**2) + (length * (length - 1))])
|
|
|
|
x_flat = F.pad(x_flat, [length, 0, 0, 0, 0, 0])
|
|
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
|
return x_final
|
|
|
|
def _attention_bias_proximal(self, length: int):
|
|
"""Bias for self-attention to encourage attention to close positions.
|
|
Args:
|
|
length: an integer scalar.
|
|
Returns:
|
|
a Tensor with shape [1, 1, length, length]
|
|
"""
|
|
r = torch.arange(length, dtype=torch.float32)
|
|
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
|
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
|
|
|
|
|
class FFN(nn.Module):
|
|
"""
|
|
Feed-Forward Network
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
filter_channels: int,
|
|
kernel_size: int,
|
|
p_dropout: float = 0.0,
|
|
activation: Optional[str] = None,
|
|
causal: bool = False,
|
|
):
|
|
super(FFN, self).__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.filter_channels = filter_channels
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.activation = activation
|
|
self.causal = causal
|
|
self.is_activation = True if activation == "gelu" else False
|
|
|
|
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
|
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
|
self.drop = nn.Dropout(p_dropout)
|
|
|
|
def __call__(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
|
|
return super().__call__(x, x_mask)
|
|
|
|
def forward(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
|
|
x = self.conv_1(self._padding(x, x_mask))
|
|
if self.is_activation:
|
|
x = x * torch.sigmoid(1.702 * x)
|
|
else:
|
|
x = torch.relu(x)
|
|
x = self.drop(x)
|
|
|
|
x = self.conv_2(self._padding(x, x_mask))
|
|
return x * x_mask
|
|
|
|
def _padding(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor:
|
|
if self.causal:
|
|
return self._causal_padding(x * x_mask)
|
|
return self._same_padding(x * x_mask)
|
|
|
|
def _causal_padding(self, x):
|
|
if self.kernel_size == 1:
|
|
return x
|
|
pad_l: int = self.kernel_size - 1
|
|
pad_r: int = 0
|
|
|
|
x = F.pad(x, [pad_l, pad_r, 0, 0, 0, 0])
|
|
return x
|
|
|
|
def _same_padding(self, x):
|
|
if self.kernel_size == 1:
|
|
return x
|
|
pad_l: int = (self.kernel_size - 1) // 2
|
|
pad_r: int = self.kernel_size // 2
|
|
|
|
x = F.pad(x, [pad_l, pad_r, 0, 0, 0, 0])
|
|
return x
|
|
|