|
import typing
|
|
import os
|
|
|
|
import librosa
|
|
import numpy as np
|
|
import onnxruntime
|
|
|
|
from rvc.f0 import (
|
|
PM,
|
|
Harvest,
|
|
Dio,
|
|
F0Predictor,
|
|
)
|
|
|
|
|
|
class Model:
|
|
def __init__(
|
|
self,
|
|
path: typing.Union[str, bytes, os.PathLike],
|
|
device: typing.Literal["cpu", "cuda", "dml"] = "cpu",
|
|
):
|
|
if device == "cpu":
|
|
providers = ["CPUExecutionProvider"]
|
|
elif device == "cuda":
|
|
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
|
elif device == "dml":
|
|
providers = ["DmlExecutionProvider"]
|
|
else:
|
|
raise RuntimeError("Unsportted Device")
|
|
self.model = onnxruntime.InferenceSession(path, providers=providers)
|
|
|
|
|
|
class ContentVec(Model):
|
|
def __init__(
|
|
self,
|
|
vec_path: typing.Union[str, bytes, os.PathLike],
|
|
device: typing.Literal["cpu", "cuda", "dml"] = "cpu",
|
|
):
|
|
super().__init__(vec_path, device)
|
|
|
|
def __call__(self, wav: np.ndarray[typing.Any, np.dtype]):
|
|
return self.forward(wav)
|
|
|
|
def forward(self, wav: np.ndarray[typing.Any, np.dtype]):
|
|
if wav.ndim == 2:
|
|
wav = wav.mean(-1)
|
|
assert wav.ndim == 1, wav.ndim
|
|
wav = np.expand_dims(np.expand_dims(wav, 0), 0)
|
|
onnx_input = {self.model.get_inputs()[0].name: wav}
|
|
logits = self.model.run(None, onnx_input)[0]
|
|
return logits.transpose(0, 2, 1)
|
|
|
|
|
|
predictors: typing.Dict[str, F0Predictor] = {
|
|
"pm": PM,
|
|
"harvest": Harvest,
|
|
"dio": Dio,
|
|
}
|
|
|
|
|
|
def get_f0_predictor(
|
|
f0_method: str, hop_length: int, sampling_rate: int
|
|
) -> F0Predictor:
|
|
return predictors[f0_method](hop_length=hop_length, sampling_rate=sampling_rate)
|
|
|
|
|
|
class RVC(Model):
|
|
def __init__(
|
|
self,
|
|
model_path: typing.Union[str, bytes, os.PathLike],
|
|
hop_len=512,
|
|
vec_path: typing.Union[str, bytes, os.PathLike] = "vec-768-layer-12.onnx",
|
|
device: typing.Literal["cpu", "cuda", "dml"] = "cpu",
|
|
):
|
|
super().__init__(model_path, device)
|
|
self.vec_model = ContentVec(vec_path, device)
|
|
self.hop_len = hop_len
|
|
|
|
def infer(
|
|
self,
|
|
wav: np.ndarray[typing.Any, np.dtype],
|
|
wav_sr: int,
|
|
model_sr: int = 40000,
|
|
sid: int = 0,
|
|
f0_method="dio",
|
|
f0_up_key=0,
|
|
) -> np.ndarray[typing.Any, np.dtype[np.int16]]:
|
|
f0_min = 50
|
|
f0_max = 1100
|
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
|
f0_predictor = get_f0_predictor(
|
|
f0_method,
|
|
self.hop_len,
|
|
model_sr,
|
|
)
|
|
org_length = len(wav)
|
|
if org_length / wav_sr > 50.0:
|
|
raise RuntimeError("wav max length exceeded")
|
|
|
|
hubert = self.vec_model(librosa.resample(wav, orig_sr=wav_sr, target_sr=16000))
|
|
hubert = np.repeat(hubert, 2, axis=2).transpose(0, 2, 1).astype(np.float32)
|
|
hubert_length = hubert.shape[1]
|
|
|
|
pitchf = f0_predictor.compute_f0(wav, hubert_length)
|
|
pitchf = pitchf * 2 ** (f0_up_key / 12)
|
|
pitch = pitchf.copy()
|
|
f0_mel = 1127 * np.log(1 + pitch / 700)
|
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
|
f0_mel_max - f0_mel_min
|
|
) + 1
|
|
f0_mel[f0_mel <= 1] = 1
|
|
f0_mel[f0_mel > 255] = 255
|
|
pitch = np.rint(f0_mel).astype(np.int64)
|
|
|
|
pitchf = pitchf.reshape(1, len(pitchf)).astype(np.float32)
|
|
pitch = pitch.reshape(1, len(pitch))
|
|
ds = np.array([sid]).astype(np.int64)
|
|
|
|
rnd = np.random.randn(1, 192, hubert_length).astype(np.float32)
|
|
hubert_length = np.array([hubert_length]).astype(np.int64)
|
|
|
|
out_wav = self.forward(hubert, hubert_length, pitch, pitchf, ds, rnd).squeeze()
|
|
|
|
out_wav = np.pad(out_wav, (0, 2 * self.hop_len), "constant")
|
|
|
|
return out_wav[0:org_length]
|
|
|
|
def forward(
|
|
self,
|
|
hubert: np.ndarray[typing.Any, np.dtype[np.float32]],
|
|
hubert_length: int,
|
|
pitch: np.ndarray[typing.Any, np.dtype[np.int64]],
|
|
pitchf: np.ndarray[typing.Any, np.dtype[np.float32]],
|
|
ds: np.ndarray[typing.Any, np.dtype[np.int64]],
|
|
rnd: np.ndarray[typing.Any, np.dtype[np.float32]],
|
|
) -> np.ndarray[typing.Any, np.dtype[np.int16]]:
|
|
onnx_input = {
|
|
self.model.get_inputs()[0].name: hubert,
|
|
self.model.get_inputs()[1].name: hubert_length,
|
|
self.model.get_inputs()[2].name: pitch,
|
|
self.model.get_inputs()[3].name: pitchf,
|
|
self.model.get_inputs()[4].name: ds,
|
|
self.model.get_inputs()[5].name: rnd,
|
|
}
|
|
return (self.model.run(None, onnx_input)[0] * 32767).astype(np.int16)
|
|
|