|
import torch |
|
from infer.lib.rmvpe import STFT |
|
from torch.nn.functional import conv1d, conv2d |
|
from typing import Union, Optional |
|
from .utils import linspace, temperature_sigmoid, amp_to_db |
|
|
|
|
|
class TorchGate(torch.nn.Module): |
|
""" |
|
A PyTorch module that applies a spectral gate to an input signal. |
|
|
|
Arguments: |
|
sr {int} -- Sample rate of the input signal. |
|
nonstationary {bool} -- Whether to use non-stationary or stationary masking (default: {False}). |
|
n_std_thresh_stationary {float} -- Number of standard deviations above mean to threshold noise for |
|
stationary masking (default: {1.5}). |
|
n_thresh_nonstationary {float} -- Number of multiplies above smoothed magnitude spectrogram. for |
|
non-stationary masking (default: {1.3}). |
|
temp_coeff_nonstationary {float} -- Temperature coefficient for non-stationary masking (default: {0.1}). |
|
n_movemean_nonstationary {int} -- Number of samples for moving average smoothing in non-stationary masking |
|
(default: {20}). |
|
prop_decrease {float} -- Proportion to decrease signal by where the mask is zero (default: {1.0}). |
|
n_fft {int} -- Size of FFT for STFT (default: {1024}). |
|
win_length {[int]} -- Window length for STFT. If None, defaults to `n_fft` (default: {None}). |
|
hop_length {[int]} -- Hop length for STFT. If None, defaults to `win_length` // 4 (default: {None}). |
|
freq_mask_smooth_hz {float} -- Frequency smoothing width for mask (in Hz). If None, no smoothing is applied |
|
(default: {500}). |
|
time_mask_smooth_ms {float} -- Time smoothing width for mask (in ms). If None, no smoothing is applied |
|
(default: {50}). |
|
""" |
|
|
|
@torch.no_grad() |
|
def __init__( |
|
self, |
|
sr: int, |
|
nonstationary: bool = False, |
|
n_std_thresh_stationary: float = 1.5, |
|
n_thresh_nonstationary: float = 1.3, |
|
temp_coeff_nonstationary: float = 0.1, |
|
n_movemean_nonstationary: int = 20, |
|
prop_decrease: float = 1.0, |
|
n_fft: int = 1024, |
|
win_length: bool = None, |
|
hop_length: int = None, |
|
freq_mask_smooth_hz: float = 500, |
|
time_mask_smooth_ms: float = 50, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.sr = sr |
|
self.nonstationary = nonstationary |
|
assert 0.0 <= prop_decrease <= 1.0 |
|
self.prop_decrease = prop_decrease |
|
|
|
|
|
self.n_fft = n_fft |
|
self.win_length = self.n_fft if win_length is None else win_length |
|
self.hop_length = self.win_length // 4 if hop_length is None else hop_length |
|
|
|
|
|
self.n_std_thresh_stationary = n_std_thresh_stationary |
|
|
|
|
|
self.temp_coeff_nonstationary = temp_coeff_nonstationary |
|
self.n_movemean_nonstationary = n_movemean_nonstationary |
|
self.n_thresh_nonstationary = n_thresh_nonstationary |
|
|
|
|
|
self.freq_mask_smooth_hz = freq_mask_smooth_hz |
|
self.time_mask_smooth_ms = time_mask_smooth_ms |
|
self.register_buffer("smoothing_filter", self._generate_mask_smoothing_filter()) |
|
|
|
@torch.no_grad() |
|
def _generate_mask_smoothing_filter(self) -> Union[torch.Tensor, None]: |
|
""" |
|
A PyTorch module that applies a spectral gate to an input signal using the STFT. |
|
|
|
Returns: |
|
smoothing_filter (torch.Tensor): a 2D tensor representing the smoothing filter, |
|
with shape (n_grad_freq, n_grad_time), where n_grad_freq is the number of frequency |
|
bins to smooth and n_grad_time is the number of time frames to smooth. |
|
If both self.freq_mask_smooth_hz and self.time_mask_smooth_ms are None, returns None. |
|
""" |
|
if self.freq_mask_smooth_hz is None and self.time_mask_smooth_ms is None: |
|
return None |
|
|
|
n_grad_freq = ( |
|
1 |
|
if self.freq_mask_smooth_hz is None |
|
else int(self.freq_mask_smooth_hz / (self.sr / (self.n_fft / 2))) |
|
) |
|
if n_grad_freq < 1: |
|
raise ValueError( |
|
f"freq_mask_smooth_hz needs to be at least {int((self.sr / (self._n_fft / 2)))} Hz" |
|
) |
|
|
|
n_grad_time = ( |
|
1 |
|
if self.time_mask_smooth_ms is None |
|
else int(self.time_mask_smooth_ms / ((self.hop_length / self.sr) * 1000)) |
|
) |
|
if n_grad_time < 1: |
|
raise ValueError( |
|
f"time_mask_smooth_ms needs to be at least {int((self.hop_length / self.sr) * 1000)} ms" |
|
) |
|
|
|
if n_grad_time == 1 and n_grad_freq == 1: |
|
return None |
|
|
|
v_f = torch.cat( |
|
[ |
|
linspace(0, 1, n_grad_freq + 1, endpoint=False), |
|
linspace(1, 0, n_grad_freq + 2), |
|
] |
|
)[1:-1] |
|
v_t = torch.cat( |
|
[ |
|
linspace(0, 1, n_grad_time + 1, endpoint=False), |
|
linspace(1, 0, n_grad_time + 2), |
|
] |
|
)[1:-1] |
|
smoothing_filter = torch.outer(v_f, v_t).unsqueeze(0).unsqueeze(0) |
|
|
|
return smoothing_filter / smoothing_filter.sum() |
|
|
|
@torch.no_grad() |
|
def _stationary_mask( |
|
self, X_db: torch.Tensor, xn: Optional[torch.Tensor] = None |
|
) -> torch.Tensor: |
|
""" |
|
Computes a stationary binary mask to filter out noise in a log-magnitude spectrogram. |
|
|
|
Arguments: |
|
X_db (torch.Tensor): 2D tensor of shape (frames, freq_bins) containing the log-magnitude spectrogram. |
|
xn (torch.Tensor): 1D tensor containing the audio signal corresponding to X_db. |
|
|
|
Returns: |
|
sig_mask (torch.Tensor): Binary mask of the same shape as X_db, where values greater than the threshold |
|
are set to 1, and the rest are set to 0. |
|
""" |
|
if xn is not None: |
|
if "privateuseone" in str(xn.device): |
|
if not hasattr(self, "stft"): |
|
self.stft = STFT( |
|
filter_length=self.n_fft, |
|
hop_length=self.hop_length, |
|
win_length=self.win_length, |
|
window="hann", |
|
).to(xn.device) |
|
XN = self.stft.transform(xn) |
|
else: |
|
XN = torch.stft( |
|
xn, |
|
n_fft=self.n_fft, |
|
hop_length=self.hop_length, |
|
win_length=self.win_length, |
|
return_complex=True, |
|
pad_mode="constant", |
|
center=True, |
|
window=torch.hann_window(self.win_length).to(xn.device), |
|
) |
|
XN_db = amp_to_db(XN).to(dtype=X_db.dtype) |
|
else: |
|
XN_db = X_db |
|
|
|
|
|
std_freq_noise, mean_freq_noise = torch.std_mean(XN_db, dim=-1) |
|
|
|
|
|
noise_thresh = mean_freq_noise + std_freq_noise * self.n_std_thresh_stationary |
|
|
|
|
|
sig_mask = X_db > noise_thresh.unsqueeze(2) |
|
return sig_mask |
|
|
|
@torch.no_grad() |
|
def _nonstationary_mask(self, X_abs: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Computes a non-stationary binary mask to filter out noise in a log-magnitude spectrogram. |
|
|
|
Arguments: |
|
X_abs (torch.Tensor): 2D tensor of shape (frames, freq_bins) containing the magnitude spectrogram. |
|
|
|
Returns: |
|
sig_mask (torch.Tensor): Binary mask of the same shape as X_abs, where values greater than the threshold |
|
are set to 1, and the rest are set to 0. |
|
""" |
|
X_smoothed = ( |
|
conv1d( |
|
X_abs.reshape(-1, 1, X_abs.shape[-1]), |
|
torch.ones( |
|
self.n_movemean_nonstationary, |
|
dtype=X_abs.dtype, |
|
device=X_abs.device, |
|
).view(1, 1, -1), |
|
padding="same", |
|
).view(X_abs.shape) |
|
/ self.n_movemean_nonstationary |
|
) |
|
|
|
|
|
slowness_ratio = (X_abs - X_smoothed) / (X_smoothed + 1e-6) |
|
sig_mask = temperature_sigmoid( |
|
slowness_ratio, self.n_thresh_nonstationary, self.temp_coeff_nonstationary |
|
) |
|
|
|
return sig_mask |
|
|
|
def forward( |
|
self, x: torch.Tensor, xn: Optional[torch.Tensor] = None |
|
) -> torch.Tensor: |
|
""" |
|
Apply the proposed algorithm to the input signal. |
|
|
|
Arguments: |
|
x (torch.Tensor): The input audio signal, with shape (batch_size, signal_length). |
|
xn (Optional[torch.Tensor]): The noise signal used for stationary noise reduction. If `None`, the input |
|
signal is used as the noise signal. Default: `None`. |
|
|
|
Returns: |
|
torch.Tensor: The denoised audio signal, with the same shape as the input signal. |
|
""" |
|
|
|
|
|
if "privateuseone" in str(x.device): |
|
if not hasattr(self, "stft"): |
|
self.stft = STFT( |
|
filter_length=self.n_fft, |
|
hop_length=self.hop_length, |
|
win_length=self.win_length, |
|
window="hann", |
|
).to(x.device) |
|
X, phase = self.stft.transform(x, return_phase=True) |
|
else: |
|
X = torch.stft( |
|
x, |
|
n_fft=self.n_fft, |
|
hop_length=self.hop_length, |
|
win_length=self.win_length, |
|
return_complex=True, |
|
pad_mode="constant", |
|
center=True, |
|
window=torch.hann_window(self.win_length).to(x.device), |
|
) |
|
|
|
|
|
if self.nonstationary: |
|
sig_mask = self._nonstationary_mask(X.abs()) |
|
else: |
|
sig_mask = self._stationary_mask(amp_to_db(X), xn) |
|
|
|
|
|
sig_mask = self.prop_decrease * (sig_mask.float() - 1.0) + 1.0 |
|
|
|
|
|
if self.smoothing_filter is not None: |
|
sig_mask = conv2d( |
|
sig_mask.unsqueeze(1), |
|
self.smoothing_filter.to(sig_mask.dtype), |
|
padding="same", |
|
) |
|
|
|
|
|
Y = X * sig_mask.squeeze(1) |
|
|
|
|
|
if "privateuseone" in str(Y.device): |
|
y = self.stft.inverse(Y, phase) |
|
else: |
|
y = torch.istft( |
|
Y, |
|
n_fft=self.n_fft, |
|
hop_length=self.hop_length, |
|
win_length=self.win_length, |
|
center=True, |
|
window=torch.hann_window(self.win_length).to(Y.device), |
|
) |
|
|
|
return y.to(dtype=x.dtype) |
|
|