from typing import List, Optional, Tuple, Iterator import torch def call_weight_data_normal_if_Conv(m: torch.nn.Module): classname = m.__class__.__name__ if classname.find("Conv") != -1: mean = 0.0 std = 0.01 m.weight.data.normal_(mean, std) def get_padding(kernel_size: int, dilation=1) -> int: return int((kernel_size * dilation - dilation) / 2) def slice_on_last_dim( x: torch.Tensor, start_indices: List[int], segment_size=4, ) -> torch.Tensor: new_shape = [*x.shape] new_shape[-1] = segment_size ret = torch.empty(new_shape, device=x.device) for i in range(x.size(0)): idx_str = start_indices[i] idx_end = idx_str + segment_size ret[i, ..., :] = x[i, ..., idx_str:idx_end] return ret def rand_slice_segments_on_last_dim( x: torch.Tensor, x_lengths: int = None, segment_size=4, ) -> Tuple[torch.Tensor, List[int]]: b, _, t = x.size() if x_lengths is None: x_lengths = t ids_str_max = x_lengths - segment_size + 1 ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) ret = slice_on_last_dim(x, ids_str, segment_size) return ret, ids_str @torch.jit.script def activate_add_tanh_sigmoid_multiply( input_a: torch.Tensor, input_b: torch.Tensor, n_channels: int ) -> torch.Tensor: in_act = input_a + input_b t_act = torch.tanh(in_act[:, :n_channels, :]) s_act = torch.sigmoid(in_act[:, n_channels:, :]) acts = t_act * s_act return acts def sequence_mask( length: torch.Tensor, max_length: Optional[int] = None, ) -> torch.BoolTensor: if max_length is None: max_length = int(length.max()) x = torch.arange(max_length, dtype=length.dtype, device=length.device) return x.unsqueeze(0) < length.unsqueeze(1) def total_grad_norm( parameters: Iterator[torch.nn.Parameter], norm_type: float = 2.0, ) -> float: norm_type = float(norm_type) total_norm = 0.0 for p in parameters: if p.grad is None: continue param_norm = p.grad.data.norm(norm_type) total_norm += float(param_norm.item()) ** norm_type total_norm = total_norm ** (1.0 / norm_type) return total_norm