import torch from .synthesizer import SynthesizerTrnMsNSFsid def export_onnx(from_cpkt_pth: str, to_onnx_pth: str) -> str: cpt = torch.load(from_cpkt_pth, map_location="cpu") cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] vec_channels = 256 if cpt.get("version", "v1") == "v1" else 768 test_phone = torch.rand(1, 200, vec_channels) # hidden unit test_phone_lengths = torch.tensor([200]).long() # hidden unit 长度(貌似没啥用) test_pitch = torch.randint(size=(1, 200), low=5, high=255) # 基频(单位赫兹) test_pitchf = torch.rand(1, 200) # nsf基频 test_ds = torch.LongTensor([0]) # 说话人ID test_rnd = torch.rand(1, 192, 200) # 噪声(加入随机因子) device = "cpu" # 导出时设备(不影响使用模型) net_g = SynthesizerTrnMsNSFsid( *cpt["config"], encoder_dim=vec_channels ) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16) net_g.load_state_dict(cpt["weight"], strict=False) input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"] output_names = [ "audio", ] # net_g.construct_spkmixmap() #多角色混合轨道导出 torch.onnx.export( net_g, ( test_phone.to(device), test_phone_lengths.to(device), test_pitch.to(device), test_pitchf.to(device), test_ds.to(device), test_rnd.to(device), ), to_onnx_pth, dynamic_axes={ "phone": [1], "pitch": [1], "pitchf": [1], "rnd": [2], }, do_constant_folding=False, opset_version=17, verbose=False, input_names=input_names, output_names=output_names, ) return "Finished"