from typing import List, Tuple import torch from torch import nn from torch.nn import Conv1d, Conv2d from torch.nn import functional as F from torch.nn.utils import spectral_norm, weight_norm from .residuals import LRELU_SLOPE from .utils import get_padding class MultiPeriodDiscriminator(torch.nn.Module): """ version: 'v1' or 'v2' """ def __init__( self, version: str, use_spectral_norm: bool = False, has_xpu: bool = False ): super(MultiPeriodDiscriminator, self).__init__() periods = ( (2, 3, 5, 7, 11, 17) if version == "v1" else (2, 3, 5, 7, 11, 17, 23, 37) ) self.discriminators = nn.ModuleList( [ DiscriminatorS(use_spectral_norm=use_spectral_norm), *( DiscriminatorP( i, use_spectral_norm=use_spectral_norm, has_xpu=has_xpu ) for i in periods ), ] ) def __call__(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[ List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]], ]: return super().__call__(y, y_hat) def forward(self, y: torch.Tensor, y_hat: torch.Tensor) -> Tuple[ List[torch.Tensor], List[torch.Tensor], List[List[torch.Tensor]], List[List[torch.Tensor]], ]: y_d_rs = [] y_d_gs = [] fmap_rs = [] fmap_gs = [] for d in self.discriminators: y_d_r, fmap_r = d(y) y_d_g, fmap_g = d(y_hat) y_d_rs.append(y_d_r) y_d_gs.append(y_d_g) fmap_rs.append(fmap_r) fmap_gs.append(fmap_g) return y_d_rs, y_d_gs, fmap_rs, fmap_gs class DiscriminatorS(torch.nn.Module): def __init__(self, use_spectral_norm: bool = False): super(DiscriminatorS, self).__init__() norm_f = spectral_norm if use_spectral_norm else weight_norm self.convs = nn.ModuleList( [ norm_f(Conv1d(1, 16, 15, 1, padding=7)), norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), ] ) self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) def __call__(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: return super().__call__(x) def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: fmap = [] for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap class DiscriminatorP(torch.nn.Module): def __init__( self, period: int, kernel_size: int = 5, stride: int = 3, use_spectral_norm: bool = False, has_xpu: bool = False, ): super(DiscriminatorP, self).__init__() self.period = period self.has_xpu = has_xpu norm_f = spectral_norm if use_spectral_norm else weight_norm sequence = (1, 32, 128, 512, 1024) convs_padding = (get_padding(kernel_size, 1), 0) self.convs = nn.ModuleList() for i in range(len(sequence) - 1): self.convs.append( norm_f( Conv2d( sequence[i], sequence[i + 1], (kernel_size, 1), (stride, 1), padding=convs_padding, ) ) ) self.convs.append( norm_f( Conv2d( 1024, 1024, (kernel_size, 1), 1, padding=convs_padding, ) ) ) self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) def __call__(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: return super().__call__(x) def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]: fmap = [] # 1d to 2d b, c, t = x.shape if t % self.period != 0: # pad first n_pad = self.period - (t % self.period) if self.has_xpu and x.dtype == torch.bfloat16: x = F.pad(x.to(dtype=torch.float16), (0, n_pad), "reflect").to( dtype=torch.bfloat16 ) else: x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) for l in self.convs: x = l(x) x = F.leaky_relu(x, LRELU_SLOPE) fmap.append(x) x = self.conv_post(x) fmap.append(x) x = torch.flatten(x, 1, -1) return x, fmap