Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- ada_vocab_factory.py +371 -0
- config.json +39 -0
- generation_config.json +7 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +173 -0
- optimizer.pt +3 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +34 -0
- tokenizer.json +3 -0
- tokenizer.model +3 -0
- tokenizer_config.json +1757 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
ada_vocab_factory.py
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import warnings
|
3 |
+
import hashlib
|
4 |
+
import os
|
5 |
+
from typing import List, Optional, Tuple, Union
|
6 |
+
from dataclasses import dataclass
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
13 |
+
|
14 |
+
from transformers.models.llama.modeling_llama import LlamaModel, LlamaPreTrainedModel, LlamaForCausalLM
|
15 |
+
from transformers.models.gemma.modeling_gemma import GemmaModel, GemmaPreTrainedModel, GemmaForCausalLM
|
16 |
+
from transformers.models.qwen2.modeling_qwen2 import Qwen2Model, Qwen2PreTrainedModel, Qwen2ForCausalLM
|
17 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
18 |
+
from transformers.cache_utils import Cache
|
19 |
+
|
20 |
+
from models.modeling_gemma import GemmaForCausalLM
|
21 |
+
from models.modeling_qwen2 import Qwen2ForCausalLM
|
22 |
+
|
23 |
+
|
24 |
+
def svd_with_cache(matrix, cache_dir, max_rank=1024):
|
25 |
+
"""
|
26 |
+
SVD with cache mechanism to avoid repeated SVD computation.
|
27 |
+
SVD can be very slow for large matrices, so we cache the results.
|
28 |
+
"""
|
29 |
+
in_dim, out_dim = matrix.shape
|
30 |
+
# slice_weight = matrix[::1000, :] # too sensitive to precision
|
31 |
+
# weight_hash = hashlib.md5(slice_weight.detach().cpu().numpy().tobytes()).hexdigest()
|
32 |
+
weight_hash = in_dim * out_dim
|
33 |
+
cache_file = os.path.join(cache_dir, f'{weight_hash}.pt')
|
34 |
+
|
35 |
+
if not os.path.exists(cache_dir):
|
36 |
+
os.makedirs(cache_dir)
|
37 |
+
|
38 |
+
if os.path.exists(cache_file):
|
39 |
+
# Load cached SVD results
|
40 |
+
|
41 |
+
U, S, Vh = torch.load(cache_file)
|
42 |
+
else:
|
43 |
+
# Perform SVD and cache the results
|
44 |
+
|
45 |
+
U, S, Vh = torch.linalg.svd(matrix.float())
|
46 |
+
U = U[:, :max_rank].clone() # Shape: [out_features, rank]
|
47 |
+
S = S[:max_rank].clone() # Shape: [rank]
|
48 |
+
Vh = Vh[:max_rank, :].clone() # Shape: [rank, in_features]
|
49 |
+
# Save the SVD results to cache
|
50 |
+
torch.save((U, S, Vh), cache_file)
|
51 |
+
return U, S, Vh
|
52 |
+
|
53 |
+
def create_factorized_compression_for_linear(source_linear, rank, svd_cache_dir='experiment_cache/'):
|
54 |
+
"""
|
55 |
+
Adapt from: https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/cli_svd.py
|
56 |
+
Create a factorized compression for a given linear layer using SVD.
|
57 |
+
Args:
|
58 |
+
source_linear (nn.Linear): The original linear layer to be compressed.
|
59 |
+
rank (int, optional): The rank for the factorization. If None, it will be calculated based on rank_factor.
|
60 |
+
rank_factor (float, optional): The factor to determine the rank if rank is not provided. Default is 0.3.
|
61 |
+
Returns:
|
62 |
+
nn.Sequential: A sequential container of the compressed linear layers.
|
63 |
+
"""
|
64 |
+
|
65 |
+
with torch.no_grad():
|
66 |
+
dtype = source_linear.weight.dtype
|
67 |
+
# Check if the source linear layer has a bias term
|
68 |
+
if hasattr(source_linear, 'bias'):
|
69 |
+
bias = source_linear.bias
|
70 |
+
else:
|
71 |
+
bias = None
|
72 |
+
# Calculate the total number of parameters in the source linear layer
|
73 |
+
source_num_params = sum(param.numel() for param in source_linear.parameters())
|
74 |
+
# Get the weight matrix of the source linear layer
|
75 |
+
source_linear_weight = source_linear.weight.data
|
76 |
+
# Ensure rank is less than the minimum dimension of the weight matrix
|
77 |
+
assert rank < min(source_linear_weight.shape)
|
78 |
+
# Perform SVD on the weight matrix
|
79 |
+
# U, S, Vh = torch.linalg.svd(source_linear_weight.float())
|
80 |
+
U, S, Vh = svd_with_cache(source_linear_weight, svd_cache_dir)
|
81 |
+
# Truncate U, S, Vh to the specified rank
|
82 |
+
U = U[:, :rank].contiguous() # Shape: [out_features, rank]
|
83 |
+
S = S[:rank].contiguous() # Shape: [rank]
|
84 |
+
Vh = Vh[:rank, :].contiguous() # Shape: [rank, in_features]
|
85 |
+
# Incorporate singular values into U
|
86 |
+
U = U @ torch.diag(S) # Shape: [out_features, rank]
|
87 |
+
# Flatten U and Vh for quantile computation
|
88 |
+
U_flatten = U.flatten()
|
89 |
+
Vh_flatten = Vh.flatten()
|
90 |
+
# Define the maximum quantization size
|
91 |
+
max_quant_size = 2**23
|
92 |
+
# Compute high and low quantile values for clamping
|
93 |
+
if len(U_flatten) + len(Vh_flatten) >= max_quant_size:
|
94 |
+
dist2 = U_flatten[:min(len(U_flatten), max_quant_size)]
|
95 |
+
dist3 = Vh_flatten[:min(len(Vh_flatten), max_quant_size)]
|
96 |
+
hi_val = max(torch.quantile(dist3, 1), torch.quantile(dist2, 1))
|
97 |
+
else:
|
98 |
+
dist = torch.cat([U_flatten, Vh_flatten])
|
99 |
+
hi_val = torch.quantile(dist, 1)
|
100 |
+
low_val = -hi_val
|
101 |
+
# Clamp U and Vh to the quantile values
|
102 |
+
U = U.clamp(low_val, hi_val)
|
103 |
+
Vh = Vh.clamp(low_val, hi_val)
|
104 |
+
# Create the down projection linear layer (Vh)
|
105 |
+
lora_down = nn.Linear(Vh.shape[1], Vh.shape[0], dtype=dtype, bias=False, device=source_linear_weight.device)
|
106 |
+
lora_down.weight.data = Vh.to(device=source_linear_weight.device, dtype=dtype)
|
107 |
+
# Create the up projection linear layer (U)
|
108 |
+
lora_up = nn.Linear(U.shape[1], U.shape[0], dtype=dtype, bias=bias is not None, device=source_linear_weight.device)
|
109 |
+
lora_up.weight.data = U.to(device=source_linear_weight.device, dtype=dtype)
|
110 |
+
# If the original linear layer had a bias, copy it to the up projection layer
|
111 |
+
if bias is not None:
|
112 |
+
lora_up.bias = nn.Parameter(bias.clone())
|
113 |
+
# Print compression ratio (for debugging purposes)
|
114 |
+
#print('compression', sum(param.numel() for param in ret.parameters()) / source_num_params)
|
115 |
+
return lora_down, lora_up
|
116 |
+
|
117 |
+
|
118 |
+
@dataclass
|
119 |
+
class AdaCausalLMOutputWithPast(CausalLMOutputWithPast):
|
120 |
+
# keep original `loss` for `training_step` and `predictions_step`,
|
121 |
+
# Add 3 sub losses: `lm_loss`, `mask_loss`, `topk_loss`
|
122 |
+
# add `lm_head_logits` for original lm_head logits, which is optional (required for train and eval, not required for generation)
|
123 |
+
lm_head_logits: Optional[torch.FloatTensor] = None
|
124 |
+
lm_loss: Optional[torch.FloatTensor] = None
|
125 |
+
mask_loss: Optional[torch.FloatTensor] = None
|
126 |
+
topk_loss: Optional[torch.FloatTensor] = None
|
127 |
+
|
128 |
+
class AdaVocabHead_MLP(nn.Module):
|
129 |
+
# No improvement compare to LoRA solution
|
130 |
+
def __init__(self, lm_head, sub_vocab_dim, activation_func=torch.nn.GELU()):
|
131 |
+
hidden_size, vocab_size = lm_head.in_features, lm_head.out_features
|
132 |
+
super().__init__()
|
133 |
+
|
134 |
+
self.A = nn.Linear(hidden_size, sub_vocab_dim, bias=False)
|
135 |
+
self.B = nn.Linear(sub_vocab_dim, sub_vocab_dim, bias=True)
|
136 |
+
self.C = nn.Linear(sub_vocab_dim, vocab_size, bias=False)
|
137 |
+
std_dev = 1 / math.sqrt(sub_vocab_dim)
|
138 |
+
nn.init.normal_(self.A.weight, 0, std_dev)
|
139 |
+
nn.init.normal_(self.B.weight, 0, std_dev)
|
140 |
+
nn.init.zeros_(self.C.weight)
|
141 |
+
self.activation_func = activation_func
|
142 |
+
|
143 |
+
def forward(self, x):
|
144 |
+
# x.shape: (..., hidden_size),
|
145 |
+
# A.shape: (hidden_size, sub_vocab_dim)
|
146 |
+
# B.shape: (sub_vocab_dim, sub_vocab_dim)
|
147 |
+
# C.shape: (sub_vocab_dim, vocab_size)
|
148 |
+
logits = self.A(x) # logits.shape: (..., sub_vocab_dim)
|
149 |
+
logits = self.activation_func(logits)
|
150 |
+
logits = self.B(logits) # logits.shape: (..., sub_vocab_dim)
|
151 |
+
# logits = self.activation_func(logits)
|
152 |
+
ada_vocab_logits = self.C(logits) # ada_vocab_logits.shape: (..., vocab_size)
|
153 |
+
|
154 |
+
return ada_vocab_logits
|
155 |
+
|
156 |
+
class AdaVocabHead_LORA(nn.Module):
|
157 |
+
def __init__(self, lm_head, sub_vocab_dim, svd=False):
|
158 |
+
hidden_size, vocab_size = lm_head.in_features, lm_head.out_features
|
159 |
+
super().__init__()
|
160 |
+
if svd: # SVD initialization
|
161 |
+
self.A, self.B = create_factorized_compression_for_linear(lm_head, sub_vocab_dim)
|
162 |
+
else: # Random initialization
|
163 |
+
self.A = nn.Linear(hidden_size, sub_vocab_dim, bias=False)
|
164 |
+
self.B = nn.Linear(sub_vocab_dim, vocab_size, bias=False)
|
165 |
+
std_dev = 1 / math.sqrt(sub_vocab_dim)
|
166 |
+
nn.init.normal_(self.A.weight, 0, std_dev)
|
167 |
+
nn.init.zeros_(self.B.weight)
|
168 |
+
|
169 |
+
def forward(self, x):
|
170 |
+
# x.shape: (..., hidden_size), A.shape: (hidden_size, sub_vocab_dim), B.shape: (sub_vocab_dim, vocab_size)
|
171 |
+
logits = self.A(x)
|
172 |
+
ada_vocab_logits = self.B(logits) # ada_vocab_logits.shape: (..., vocab_size)
|
173 |
+
return ada_vocab_logits
|
174 |
+
|
175 |
+
def create_AdaVocabCausalLM(base_class): # Support LLama, Qwen2, Gemma
|
176 |
+
class AdaVocabCausalLM(base_class):
|
177 |
+
# TODO: Check the function of this variable and if it affects the AdaVocab Head model
|
178 |
+
_tied_weights_keys = ["lm_head.weight"]
|
179 |
+
|
180 |
+
def __init__(self, config):
|
181 |
+
super().__init__(config)
|
182 |
+
self.sub_vocab_dim = config.ADA_DIM
|
183 |
+
self.offload_tag = False
|
184 |
+
# AdaVocabHead is already initialized with random weights/ SVD weights
|
185 |
+
# so no need to use `self.post_init` method after this
|
186 |
+
if config.ADA_ACT:
|
187 |
+
self.adavocab_head = AdaVocabHead_MLP(self.lm_head, self.sub_vocab_dim, activation_func=nn.GELU())
|
188 |
+
else:
|
189 |
+
self.adavocab_head = AdaVocabHead_LORA(self.lm_head, self.sub_vocab_dim, svd=config.ADA_SVD)
|
190 |
+
|
191 |
+
self.freeze_original_model()
|
192 |
+
|
193 |
+
def freeze_original_model(self):
|
194 |
+
# freeze orginal llama except AdaVocabHead
|
195 |
+
for param in self.model.parameters():
|
196 |
+
param.requires_grad = False
|
197 |
+
for param in self.lm_head.parameters():
|
198 |
+
param.requires_grad = False
|
199 |
+
for param in self.adavocab_head.parameters():
|
200 |
+
param.requires_grad = True
|
201 |
+
|
202 |
+
def offload_lm_head(self):
|
203 |
+
self.offload_tag = True
|
204 |
+
self.lm_head = self.lm_head.to(torch.device('cpu'))
|
205 |
+
|
206 |
+
def topk_mask(self, logits):
|
207 |
+
# logits.shape: (batch_size, seq_len, vocab_size)
|
208 |
+
topk_values, topk_indices = torch.topk(logits, self.config.ADA_TOPK, dim=-1)
|
209 |
+
# topk_values.shape, topk_indices.shape: (batch_size, seq_len, topK)
|
210 |
+
mask = torch.zeros_like(logits) # (batch_size, seq_len, vocab_size)
|
211 |
+
# Only in top-k positions, put 1 to the corresponding position
|
212 |
+
mask.scatter_(dim=-1, index=topk_indices, src=torch.ones_like(mask))
|
213 |
+
return mask
|
214 |
+
|
215 |
+
def pred_with_sliced_lm_head_simple(self, ada_logits, hidden_states):
|
216 |
+
# nll_loss = None
|
217 |
+
# Limit activated tokens to ADA_TOPK during inference
|
218 |
+
# ada_logits_mask = self.topk_mask(ada_logits) # (batch_size, seq_len, vocab_size)
|
219 |
+
ada_logits, topk_indices = torch.topk(ada_logits, self.config.ADA_TOPK, dim=-1) # ada_logits: # (batch_size, seq_len, vocab_size) = # (batch_size, 1, vocab_size)
|
220 |
+
|
221 |
+
# ada_logits = ada_logits * ada_logits_mask # (batch_size, seq_len, vocab_size)
|
222 |
+
# ada_logits = topk_values
|
223 |
+
|
224 |
+
# batch_size, seq_len, vocab_size = ada_logits.size()
|
225 |
+
gt_zero_pos = torch.nonzero(ada_logits[:, -1, :] > 0, as_tuple=True)[-1].shape[0]
|
226 |
+
ada_index_slice = topk_indices[:, :, :gt_zero_pos].flatten().to(self.lm_head.weight.device) # equivalent to `sigmoid(ada_logits) > 0.5`
|
227 |
+
# union_ada_index_slice = torch.unique(ada_index_slice).to(self.lm_head.weight.device) # torch_size([union_size])
|
228 |
+
sliced_lm_head_weight = self.lm_head.weight[ada_index_slice, :].contiguous().to(hidden_states.device) # torch.Size([union_size, hidden_size])
|
229 |
+
lm_logits_sliced = hidden_states @ sliced_lm_head_weight.T # (batch_size, seq_len, union_size)
|
230 |
+
|
231 |
+
return lm_logits_sliced, ada_index_slice
|
232 |
+
|
233 |
+
def forward(
|
234 |
+
self,
|
235 |
+
input_ids: torch.LongTensor = None,
|
236 |
+
attention_mask: Optional[torch.Tensor] = None,
|
237 |
+
position_ids: Optional[torch.LongTensor] = None,
|
238 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
239 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
240 |
+
labels: Optional[torch.LongTensor] = None,
|
241 |
+
use_cache: Optional[bool] = None,
|
242 |
+
output_attentions: Optional[bool] = None,
|
243 |
+
output_hidden_states: Optional[bool] = None,
|
244 |
+
return_dict: Optional[bool] = None,
|
245 |
+
cache_position: Optional[torch.LongTensor] = None, # TODO: check the effect of this new variable
|
246 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
247 |
+
# TODO: How does forward know whether is training or inference?
|
248 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
249 |
+
output_hidden_states = (
|
250 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
251 |
+
)
|
252 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
253 |
+
|
254 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
255 |
+
outputs = self.model(
|
256 |
+
input_ids=input_ids,
|
257 |
+
attention_mask=attention_mask,
|
258 |
+
position_ids=position_ids,
|
259 |
+
past_key_values=past_key_values,
|
260 |
+
inputs_embeds=inputs_embeds,
|
261 |
+
use_cache=use_cache,
|
262 |
+
output_attentions=output_attentions,
|
263 |
+
output_hidden_states=output_hidden_states,
|
264 |
+
return_dict=return_dict,
|
265 |
+
)
|
266 |
+
|
267 |
+
hidden_states = outputs[0] # hidden_states.shape: (batch_size, seq_len, hidden_size)
|
268 |
+
batch_size, seq_len, _ = hidden_states.size()
|
269 |
+
vocab_size = self.lm_head.weight.shape[0]
|
270 |
+
|
271 |
+
# This activation could be very large during training if vocab_size is large,
|
272 |
+
# but in inference, storing activation is not needed
|
273 |
+
|
274 |
+
# TINGYUAN
|
275 |
+
self.adavocab_head.A.to(hidden_states.device)
|
276 |
+
self.adavocab_head.B.to(hidden_states.device)
|
277 |
+
ada_logits = self.adavocab_head(hidden_states[:, -1:, :]) # (batch_size, seq_len, vocab_size)
|
278 |
+
# ada_logits = ada_logits.float()
|
279 |
+
self.adavocab_head.A.to("cpu")
|
280 |
+
self.adavocab_head.B.to("cpu")
|
281 |
+
|
282 |
+
lm_head_logits = None
|
283 |
+
lm_loss, mask_loss, topk_loss = None, None, None
|
284 |
+
loss = None
|
285 |
+
|
286 |
+
if labels is not None: # For prediction_step, training_step. Not for generation
|
287 |
+
# ------ Only for Training and Eval Loop------
|
288 |
+
# During Inference, we don't need self.lm_head in GPU memory
|
289 |
+
lm_head_logits = self.lm_head(hidden_states) # (batch_size, seq_len, vocab_size)
|
290 |
+
lm_head_logits = lm_head_logits.float()
|
291 |
+
# -------------------------------
|
292 |
+
# Supervised Signal of `self.adavocab_head` from two sources:
|
293 |
+
# 1. (Primary) BCEWithLogitsLoss between ada_logits and topk_gt_mask (distillation signal)
|
294 |
+
# 2. CrossEntropyLoss between ada_logits and labels with constraint (from ground truth labels)
|
295 |
+
|
296 |
+
if self.training: # training_step
|
297 |
+
# Loss from the second source
|
298 |
+
# Shift so that tokens < n predict n
|
299 |
+
shift_logits = ada_logits[..., :-1, :].contiguous() # (batch_size, seq_len - 1, vocab_size)
|
300 |
+
shift_labels = labels[..., 1:].contiguous() # (batch_size, seq_len - 1)
|
301 |
+
|
302 |
+
# Flatten the tokens
|
303 |
+
loss_fct = CrossEntropyLoss() # CE loss includes the softmax function
|
304 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size) # (batch_size * (seq_len - 1), vocab_size)
|
305 |
+
|
306 |
+
shift_labels = shift_labels.view(-1) # (batch_size * seq_len)
|
307 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
308 |
+
|
309 |
+
lm_loss = loss_fct(shift_logits, shift_labels)
|
310 |
+
else: # prediction_step
|
311 |
+
_, lm_loss = self.pred_with_sliced_lm_head(ada_logits, hidden_states, input_ids, labels, min_logit=-100)
|
312 |
+
|
313 |
+
# Loss from the first source
|
314 |
+
ada_logits_flat = ada_logits.view(-1, self.config.vocab_size) # (batch_size * seq_len, vocab_size)
|
315 |
+
ada_probs = torch.sigmoid(ada_logits_flat) # (batch_size * seq_len, vocab_size)
|
316 |
+
|
317 |
+
topk_gt_mask = self.topk_mask(lm_head_logits) # (batch_size, seq_len, vocab_size)
|
318 |
+
# TODO: Add weights from lm_head_logits
|
319 |
+
topk_gt_mask = topk_gt_mask.view(-1, self.config.vocab_size) # (batch_size * seq_len, vocab_size)
|
320 |
+
|
321 |
+
mask_loss_fct = BCEWithLogitsLoss() # BCE Loss including the sigmoid function
|
322 |
+
mask_loss = mask_loss_fct(ada_logits_flat, topk_gt_mask)
|
323 |
+
|
324 |
+
ada_ones = ada_probs.sum() # scalar
|
325 |
+
# TODO: Handle pad token in no-packing case
|
326 |
+
target_ones = batch_size * seq_len * self.config.ADA_TOPK # scalar
|
327 |
+
target_ones = torch.tensor(target_ones, dtype=torch.float32).to(ada_ones.device)
|
328 |
+
# We need to normalize this loss, make it agnostic to batch size, seq_len, topK
|
329 |
+
topk_loss = F.l1_loss(ada_ones, target_ones) / target_ones
|
330 |
+
|
331 |
+
loss = self.config.ADA_LOSS_WEIGHT * lm_loss + self.config.ADA_MASK_WEIGHT * mask_loss + self.config.ADA_TOPK_WEIGHT * topk_loss
|
332 |
+
else: # For generation
|
333 |
+
with torch.no_grad():
|
334 |
+
ada_logits, lm_head_logits = self.pred_with_sliced_lm_head_simple(ada_logits, hidden_states[:, -1:, :])
|
335 |
+
|
336 |
+
if not return_dict:
|
337 |
+
output = (ada_logits,) + outputs[1:]
|
338 |
+
return (loss,) + output if loss is not None else output
|
339 |
+
|
340 |
+
return AdaCausalLMOutputWithPast(
|
341 |
+
loss=loss,
|
342 |
+
logits=ada_logits,
|
343 |
+
past_key_values=outputs.past_key_values,
|
344 |
+
hidden_states=outputs.hidden_states,
|
345 |
+
attentions=outputs.attentions,
|
346 |
+
# Added by AdaVocab
|
347 |
+
lm_head_logits=lm_head_logits if lm_head_logits is not None else None,
|
348 |
+
lm_loss=self.config.ADA_LOSS_WEIGHT * lm_loss if lm_loss is not None else None,
|
349 |
+
mask_loss=self.config.ADA_MASK_WEIGHT * mask_loss if mask_loss is not None else None,
|
350 |
+
topk_loss=self.config.ADA_TOPK_WEIGHT * topk_loss if topk_loss is not None else None,
|
351 |
+
)
|
352 |
+
|
353 |
+
def get_input_embeddings(self):
|
354 |
+
return self.model.embed_tokens
|
355 |
+
|
356 |
+
def set_input_embeddings(self, value):
|
357 |
+
self.model.embed_tokens = value
|
358 |
+
|
359 |
+
def get_output_embeddings(self):
|
360 |
+
return self.lm_head
|
361 |
+
|
362 |
+
def set_output_embeddings(self, new_embeddings):
|
363 |
+
self.lm_head = new_embeddings
|
364 |
+
|
365 |
+
# TODO: Add `get` and `set` methods for `adavocab_head`
|
366 |
+
return AdaVocabCausalLM
|
367 |
+
|
368 |
+
AdaVocabLlamaForCausalLM = create_AdaVocabCausalLM(LlamaForCausalLM)
|
369 |
+
AdaVocabGemmaforCausalLM = create_AdaVocabCausalLM(GemmaForCausalLM)
|
370 |
+
AdaVocabQwen2ForCausalLM = create_AdaVocabCausalLM(Qwen2ForCausalLM)
|
371 |
+
|
config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ADA_ACT": false,
|
3 |
+
"ADA_DIM": 1024,
|
4 |
+
"ADA_LOSS_WEIGHT": 1.0,
|
5 |
+
"ADA_MASK_WEIGHT": 10.0,
|
6 |
+
"ADA_SVD": false,
|
7 |
+
"ADA_TOPK": 1024,
|
8 |
+
"ADA_TOPK_WEIGHT": 0.1,
|
9 |
+
"_name_or_path": "experiment_ckpts/gemma-2b_SFT-2024-06-10-123619/checkpoint-11592",
|
10 |
+
"architectures": [
|
11 |
+
"AdaVocabGemmaforCausalLM"
|
12 |
+
],
|
13 |
+
"auto_map": {
|
14 |
+
"AutoModelForCausalLM": "ada_vocab_factory.AdaVocabGemmaforCausalLM"
|
15 |
+
},
|
16 |
+
"attention_bias": false,
|
17 |
+
"attention_dropout": 0.0,
|
18 |
+
"bos_token_id": 2,
|
19 |
+
"eos_token_id": 1,
|
20 |
+
"head_dim": 256,
|
21 |
+
"hidden_act": "gelu",
|
22 |
+
"hidden_activation": "gelu_pytorch_tanh",
|
23 |
+
"hidden_size": 2048,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"intermediate_size": 16384,
|
26 |
+
"max_position_embeddings": 8192,
|
27 |
+
"model_type": "gemma",
|
28 |
+
"num_attention_heads": 8,
|
29 |
+
"num_hidden_layers": 18,
|
30 |
+
"num_key_value_heads": 1,
|
31 |
+
"pad_token_id": 0,
|
32 |
+
"rms_norm_eps": 1e-06,
|
33 |
+
"rope_scaling": null,
|
34 |
+
"rope_theta": 10000.0,
|
35 |
+
"torch_dtype": "bfloat16",
|
36 |
+
"transformers_version": "4.41.2",
|
37 |
+
"use_cache": true,
|
38 |
+
"vocab_size": 256000
|
39 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 2,
|
4 |
+
"eos_token_id": 1,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.41.2"
|
7 |
+
}
|
model-00001-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28313e4f41d562d47d11611da72aaa3ae762fb7e7bbdf6ad7c1d2af388a5bbce
|
3 |
+
size 4945242264
|
model-00002-of-00002.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:452b7164c0df78eaf830eaee2576bae80a3f0b814189ec9fa97e0d356f2d0071
|
3 |
+
size 595604120
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 5540827136
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"adavocab_head.A.weight": "model-00002-of-00002.safetensors",
|
7 |
+
"adavocab_head.B.weight": "model-00002-of-00002.safetensors",
|
8 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
9 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
10 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
11 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
12 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
13 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
18 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
23 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
24 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
25 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
26 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
27 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
28 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
29 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
30 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
31 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
32 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
33 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
34 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
35 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
36 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
37 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
38 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
39 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
40 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
41 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
42 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
43 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
44 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
45 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
46 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
47 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
48 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
49 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
50 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
51 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
52 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
53 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
54 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
55 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
56 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
57 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
58 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
59 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
60 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
61 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
62 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
63 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
64 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
65 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
66 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
67 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
68 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
69 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
70 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
71 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
72 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
73 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
74 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
75 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
76 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
77 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
78 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
79 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
80 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
81 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
82 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
83 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
84 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
85 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
86 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
87 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
88 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
89 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
90 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
91 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
92 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
93 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
94 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
95 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
96 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
97 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
98 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
99 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
100 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
101 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
102 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
103 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
104 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
105 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
106 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
107 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
108 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
109 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
110 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
111 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
112 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
113 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
114 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
115 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
116 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
117 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
118 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
119 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
120 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
121 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
122 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
123 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
124 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
125 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
126 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
127 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
128 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
129 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
130 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
131 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
132 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
133 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
134 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
135 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
136 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
137 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
138 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
139 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
140 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
141 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
142 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
143 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
144 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
145 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
146 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
147 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
148 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
149 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
150 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
151 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
152 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
153 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
154 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
155 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
156 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
157 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
158 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
159 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
160 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
161 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
162 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
163 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
164 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
165 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
166 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
167 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
168 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
169 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
170 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
171 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
172 |
+
}
|
173 |
+
}
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a46b58c89a755942de729304ebc2feb8bfb4a41abb255a43e7e5d80ef2d3df1
|
3 |
+
size 2113931680
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38c9fd84c2df1d33f1649abe5c62475a7c3f85ef4cdea02825c86259bec765ec
|
3 |
+
size 14512
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d92d6d4b7c1161fff992560777767ea822d9d44702426f8bfdfb93cf3411106e
|
3 |
+
size 14512
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56c31c1a8789d8835d62a0bd8cd3273d62f53e94d3ab833b7778b112574d7505
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<start_of_turn>",
|
4 |
+
"<end_of_turn>"
|
5 |
+
],
|
6 |
+
"bos_token": {
|
7 |
+
"content": "<bos>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"eos_token": {
|
14 |
+
"content": "<eos>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"pad_token": {
|
21 |
+
"content": "<pad>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false
|
26 |
+
},
|
27 |
+
"unk_token": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7da53ca29fb16f6b2489482fc0bc6a394162cdab14d12764a1755ebc583fea79
|
3 |
+
size 17518525
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2
|
3 |
+
size 4241003
|
tokenizer_config.json
ADDED
@@ -0,0 +1,1757 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<pad>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<eos>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "<bos>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<unk>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"4": {
|
38 |
+
"content": "<mask>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": false
|
44 |
+
},
|
45 |
+
"5": {
|
46 |
+
"content": "<2mass>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": false
|
52 |
+
},
|
53 |
+
"6": {
|
54 |
+
"content": "[@BOS@]",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": false
|
60 |
+
},
|
61 |
+
"7": {
|
62 |
+
"content": "<unused0>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": false
|
68 |
+
},
|
69 |
+
"8": {
|
70 |
+
"content": "<unused1>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": false
|
76 |
+
},
|
77 |
+
"9": {
|
78 |
+
"content": "<unused2>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": false
|
84 |
+
},
|
85 |
+
"10": {
|
86 |
+
"content": "<unused3>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": false
|
92 |
+
},
|
93 |
+
"11": {
|
94 |
+
"content": "<unused4>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": false
|
100 |
+
},
|
101 |
+
"12": {
|
102 |
+
"content": "<unused5>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": false
|
108 |
+
},
|
109 |
+
"13": {
|
110 |
+
"content": "<unused6>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": false
|
116 |
+
},
|
117 |
+
"14": {
|
118 |
+
"content": "<unused7>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"15": {
|
126 |
+
"content": "<unused8>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"16": {
|
134 |
+
"content": "<unused9>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"17": {
|
142 |
+
"content": "<unused10>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"18": {
|
150 |
+
"content": "<unused11>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"19": {
|
158 |
+
"content": "<unused12>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"20": {
|
166 |
+
"content": "<unused13>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"21": {
|
174 |
+
"content": "<unused14>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"22": {
|
182 |
+
"content": "<unused15>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"23": {
|
190 |
+
"content": "<unused16>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"24": {
|
198 |
+
"content": "<unused17>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"25": {
|
206 |
+
"content": "<unused18>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
},
|
213 |
+
"26": {
|
214 |
+
"content": "<unused19>",
|
215 |
+
"lstrip": false,
|
216 |
+
"normalized": false,
|
217 |
+
"rstrip": false,
|
218 |
+
"single_word": false,
|
219 |
+
"special": false
|
220 |
+
},
|
221 |
+
"27": {
|
222 |
+
"content": "<unused20>",
|
223 |
+
"lstrip": false,
|
224 |
+
"normalized": false,
|
225 |
+
"rstrip": false,
|
226 |
+
"single_word": false,
|
227 |
+
"special": false
|
228 |
+
},
|
229 |
+
"28": {
|
230 |
+
"content": "<unused21>",
|
231 |
+
"lstrip": false,
|
232 |
+
"normalized": false,
|
233 |
+
"rstrip": false,
|
234 |
+
"single_word": false,
|
235 |
+
"special": false
|
236 |
+
},
|
237 |
+
"29": {
|
238 |
+
"content": "<unused22>",
|
239 |
+
"lstrip": false,
|
240 |
+
"normalized": false,
|
241 |
+
"rstrip": false,
|
242 |
+
"single_word": false,
|
243 |
+
"special": false
|
244 |
+
},
|
245 |
+
"30": {
|
246 |
+
"content": "<unused23>",
|
247 |
+
"lstrip": false,
|
248 |
+
"normalized": false,
|
249 |
+
"rstrip": false,
|
250 |
+
"single_word": false,
|
251 |
+
"special": false
|
252 |
+
},
|
253 |
+
"31": {
|
254 |
+
"content": "<unused24>",
|
255 |
+
"lstrip": false,
|
256 |
+
"normalized": false,
|
257 |
+
"rstrip": false,
|
258 |
+
"single_word": false,
|
259 |
+
"special": false
|
260 |
+
},
|
261 |
+
"32": {
|
262 |
+
"content": "<unused25>",
|
263 |
+
"lstrip": false,
|
264 |
+
"normalized": false,
|
265 |
+
"rstrip": false,
|
266 |
+
"single_word": false,
|
267 |
+
"special": false
|
268 |
+
},
|
269 |
+
"33": {
|
270 |
+
"content": "<unused26>",
|
271 |
+
"lstrip": false,
|
272 |
+
"normalized": false,
|
273 |
+
"rstrip": false,
|
274 |
+
"single_word": false,
|
275 |
+
"special": false
|
276 |
+
},
|
277 |
+
"34": {
|
278 |
+
"content": "<unused27>",
|
279 |
+
"lstrip": false,
|
280 |
+
"normalized": false,
|
281 |
+
"rstrip": false,
|
282 |
+
"single_word": false,
|
283 |
+
"special": false
|
284 |
+
},
|
285 |
+
"35": {
|
286 |
+
"content": "<unused28>",
|
287 |
+
"lstrip": false,
|
288 |
+
"normalized": false,
|
289 |
+
"rstrip": false,
|
290 |
+
"single_word": false,
|
291 |
+
"special": false
|
292 |
+
},
|
293 |
+
"36": {
|
294 |
+
"content": "<unused29>",
|
295 |
+
"lstrip": false,
|
296 |
+
"normalized": false,
|
297 |
+
"rstrip": false,
|
298 |
+
"single_word": false,
|
299 |
+
"special": false
|
300 |
+
},
|
301 |
+
"37": {
|
302 |
+
"content": "<unused30>",
|
303 |
+
"lstrip": false,
|
304 |
+
"normalized": false,
|
305 |
+
"rstrip": false,
|
306 |
+
"single_word": false,
|
307 |
+
"special": false
|
308 |
+
},
|
309 |
+
"38": {
|
310 |
+
"content": "<unused31>",
|
311 |
+
"lstrip": false,
|
312 |
+
"normalized": false,
|
313 |
+
"rstrip": false,
|
314 |
+
"single_word": false,
|
315 |
+
"special": false
|
316 |
+
},
|
317 |
+
"39": {
|
318 |
+
"content": "<unused32>",
|
319 |
+
"lstrip": false,
|
320 |
+
"normalized": false,
|
321 |
+
"rstrip": false,
|
322 |
+
"single_word": false,
|
323 |
+
"special": false
|
324 |
+
},
|
325 |
+
"40": {
|
326 |
+
"content": "<unused33>",
|
327 |
+
"lstrip": false,
|
328 |
+
"normalized": false,
|
329 |
+
"rstrip": false,
|
330 |
+
"single_word": false,
|
331 |
+
"special": false
|
332 |
+
},
|
333 |
+
"41": {
|
334 |
+
"content": "<unused34>",
|
335 |
+
"lstrip": false,
|
336 |
+
"normalized": false,
|
337 |
+
"rstrip": false,
|
338 |
+
"single_word": false,
|
339 |
+
"special": false
|
340 |
+
},
|
341 |
+
"42": {
|
342 |
+
"content": "<unused35>",
|
343 |
+
"lstrip": false,
|
344 |
+
"normalized": false,
|
345 |
+
"rstrip": false,
|
346 |
+
"single_word": false,
|
347 |
+
"special": false
|
348 |
+
},
|
349 |
+
"43": {
|
350 |
+
"content": "<unused36>",
|
351 |
+
"lstrip": false,
|
352 |
+
"normalized": false,
|
353 |
+
"rstrip": false,
|
354 |
+
"single_word": false,
|
355 |
+
"special": false
|
356 |
+
},
|
357 |
+
"44": {
|
358 |
+
"content": "<unused37>",
|
359 |
+
"lstrip": false,
|
360 |
+
"normalized": false,
|
361 |
+
"rstrip": false,
|
362 |
+
"single_word": false,
|
363 |
+
"special": false
|
364 |
+
},
|
365 |
+
"45": {
|
366 |
+
"content": "<unused38>",
|
367 |
+
"lstrip": false,
|
368 |
+
"normalized": false,
|
369 |
+
"rstrip": false,
|
370 |
+
"single_word": false,
|
371 |
+
"special": false
|
372 |
+
},
|
373 |
+
"46": {
|
374 |
+
"content": "<unused39>",
|
375 |
+
"lstrip": false,
|
376 |
+
"normalized": false,
|
377 |
+
"rstrip": false,
|
378 |
+
"single_word": false,
|
379 |
+
"special": false
|
380 |
+
},
|
381 |
+
"47": {
|
382 |
+
"content": "<unused40>",
|
383 |
+
"lstrip": false,
|
384 |
+
"normalized": false,
|
385 |
+
"rstrip": false,
|
386 |
+
"single_word": false,
|
387 |
+
"special": false
|
388 |
+
},
|
389 |
+
"48": {
|
390 |
+
"content": "<unused41>",
|
391 |
+
"lstrip": false,
|
392 |
+
"normalized": false,
|
393 |
+
"rstrip": false,
|
394 |
+
"single_word": false,
|
395 |
+
"special": false
|
396 |
+
},
|
397 |
+
"49": {
|
398 |
+
"content": "<unused42>",
|
399 |
+
"lstrip": false,
|
400 |
+
"normalized": false,
|
401 |
+
"rstrip": false,
|
402 |
+
"single_word": false,
|
403 |
+
"special": false
|
404 |
+
},
|
405 |
+
"50": {
|
406 |
+
"content": "<unused43>",
|
407 |
+
"lstrip": false,
|
408 |
+
"normalized": false,
|
409 |
+
"rstrip": false,
|
410 |
+
"single_word": false,
|
411 |
+
"special": false
|
412 |
+
},
|
413 |
+
"51": {
|
414 |
+
"content": "<unused44>",
|
415 |
+
"lstrip": false,
|
416 |
+
"normalized": false,
|
417 |
+
"rstrip": false,
|
418 |
+
"single_word": false,
|
419 |
+
"special": false
|
420 |
+
},
|
421 |
+
"52": {
|
422 |
+
"content": "<unused45>",
|
423 |
+
"lstrip": false,
|
424 |
+
"normalized": false,
|
425 |
+
"rstrip": false,
|
426 |
+
"single_word": false,
|
427 |
+
"special": false
|
428 |
+
},
|
429 |
+
"53": {
|
430 |
+
"content": "<unused46>",
|
431 |
+
"lstrip": false,
|
432 |
+
"normalized": false,
|
433 |
+
"rstrip": false,
|
434 |
+
"single_word": false,
|
435 |
+
"special": false
|
436 |
+
},
|
437 |
+
"54": {
|
438 |
+
"content": "<unused47>",
|
439 |
+
"lstrip": false,
|
440 |
+
"normalized": false,
|
441 |
+
"rstrip": false,
|
442 |
+
"single_word": false,
|
443 |
+
"special": false
|
444 |
+
},
|
445 |
+
"55": {
|
446 |
+
"content": "<unused48>",
|
447 |
+
"lstrip": false,
|
448 |
+
"normalized": false,
|
449 |
+
"rstrip": false,
|
450 |
+
"single_word": false,
|
451 |
+
"special": false
|
452 |
+
},
|
453 |
+
"56": {
|
454 |
+
"content": "<unused49>",
|
455 |
+
"lstrip": false,
|
456 |
+
"normalized": false,
|
457 |
+
"rstrip": false,
|
458 |
+
"single_word": false,
|
459 |
+
"special": false
|
460 |
+
},
|
461 |
+
"57": {
|
462 |
+
"content": "<unused50>",
|
463 |
+
"lstrip": false,
|
464 |
+
"normalized": false,
|
465 |
+
"rstrip": false,
|
466 |
+
"single_word": false,
|
467 |
+
"special": false
|
468 |
+
},
|
469 |
+
"58": {
|
470 |
+
"content": "<unused51>",
|
471 |
+
"lstrip": false,
|
472 |
+
"normalized": false,
|
473 |
+
"rstrip": false,
|
474 |
+
"single_word": false,
|
475 |
+
"special": false
|
476 |
+
},
|
477 |
+
"59": {
|
478 |
+
"content": "<unused52>",
|
479 |
+
"lstrip": false,
|
480 |
+
"normalized": false,
|
481 |
+
"rstrip": false,
|
482 |
+
"single_word": false,
|
483 |
+
"special": false
|
484 |
+
},
|
485 |
+
"60": {
|
486 |
+
"content": "<unused53>",
|
487 |
+
"lstrip": false,
|
488 |
+
"normalized": false,
|
489 |
+
"rstrip": false,
|
490 |
+
"single_word": false,
|
491 |
+
"special": false
|
492 |
+
},
|
493 |
+
"61": {
|
494 |
+
"content": "<unused54>",
|
495 |
+
"lstrip": false,
|
496 |
+
"normalized": false,
|
497 |
+
"rstrip": false,
|
498 |
+
"single_word": false,
|
499 |
+
"special": false
|
500 |
+
},
|
501 |
+
"62": {
|
502 |
+
"content": "<unused55>",
|
503 |
+
"lstrip": false,
|
504 |
+
"normalized": false,
|
505 |
+
"rstrip": false,
|
506 |
+
"single_word": false,
|
507 |
+
"special": false
|
508 |
+
},
|
509 |
+
"63": {
|
510 |
+
"content": "<unused56>",
|
511 |
+
"lstrip": false,
|
512 |
+
"normalized": false,
|
513 |
+
"rstrip": false,
|
514 |
+
"single_word": false,
|
515 |
+
"special": false
|
516 |
+
},
|
517 |
+
"64": {
|
518 |
+
"content": "<unused57>",
|
519 |
+
"lstrip": false,
|
520 |
+
"normalized": false,
|
521 |
+
"rstrip": false,
|
522 |
+
"single_word": false,
|
523 |
+
"special": false
|
524 |
+
},
|
525 |
+
"65": {
|
526 |
+
"content": "<unused58>",
|
527 |
+
"lstrip": false,
|
528 |
+
"normalized": false,
|
529 |
+
"rstrip": false,
|
530 |
+
"single_word": false,
|
531 |
+
"special": false
|
532 |
+
},
|
533 |
+
"66": {
|
534 |
+
"content": "<unused59>",
|
535 |
+
"lstrip": false,
|
536 |
+
"normalized": false,
|
537 |
+
"rstrip": false,
|
538 |
+
"single_word": false,
|
539 |
+
"special": false
|
540 |
+
},
|
541 |
+
"67": {
|
542 |
+
"content": "<unused60>",
|
543 |
+
"lstrip": false,
|
544 |
+
"normalized": false,
|
545 |
+
"rstrip": false,
|
546 |
+
"single_word": false,
|
547 |
+
"special": false
|
548 |
+
},
|
549 |
+
"68": {
|
550 |
+
"content": "<unused61>",
|
551 |
+
"lstrip": false,
|
552 |
+
"normalized": false,
|
553 |
+
"rstrip": false,
|
554 |
+
"single_word": false,
|
555 |
+
"special": false
|
556 |
+
},
|
557 |
+
"69": {
|
558 |
+
"content": "<unused62>",
|
559 |
+
"lstrip": false,
|
560 |
+
"normalized": false,
|
561 |
+
"rstrip": false,
|
562 |
+
"single_word": false,
|
563 |
+
"special": false
|
564 |
+
},
|
565 |
+
"70": {
|
566 |
+
"content": "<unused63>",
|
567 |
+
"lstrip": false,
|
568 |
+
"normalized": false,
|
569 |
+
"rstrip": false,
|
570 |
+
"single_word": false,
|
571 |
+
"special": false
|
572 |
+
},
|
573 |
+
"71": {
|
574 |
+
"content": "<unused64>",
|
575 |
+
"lstrip": false,
|
576 |
+
"normalized": false,
|
577 |
+
"rstrip": false,
|
578 |
+
"single_word": false,
|
579 |
+
"special": false
|
580 |
+
},
|
581 |
+
"72": {
|
582 |
+
"content": "<unused65>",
|
583 |
+
"lstrip": false,
|
584 |
+
"normalized": false,
|
585 |
+
"rstrip": false,
|
586 |
+
"single_word": false,
|
587 |
+
"special": false
|
588 |
+
},
|
589 |
+
"73": {
|
590 |
+
"content": "<unused66>",
|
591 |
+
"lstrip": false,
|
592 |
+
"normalized": false,
|
593 |
+
"rstrip": false,
|
594 |
+
"single_word": false,
|
595 |
+
"special": false
|
596 |
+
},
|
597 |
+
"74": {
|
598 |
+
"content": "<unused67>",
|
599 |
+
"lstrip": false,
|
600 |
+
"normalized": false,
|
601 |
+
"rstrip": false,
|
602 |
+
"single_word": false,
|
603 |
+
"special": false
|
604 |
+
},
|
605 |
+
"75": {
|
606 |
+
"content": "<unused68>",
|
607 |
+
"lstrip": false,
|
608 |
+
"normalized": false,
|
609 |
+
"rstrip": false,
|
610 |
+
"single_word": false,
|
611 |
+
"special": false
|
612 |
+
},
|
613 |
+
"76": {
|
614 |
+
"content": "<unused69>",
|
615 |
+
"lstrip": false,
|
616 |
+
"normalized": false,
|
617 |
+
"rstrip": false,
|
618 |
+
"single_word": false,
|
619 |
+
"special": false
|
620 |
+
},
|
621 |
+
"77": {
|
622 |
+
"content": "<unused70>",
|
623 |
+
"lstrip": false,
|
624 |
+
"normalized": false,
|
625 |
+
"rstrip": false,
|
626 |
+
"single_word": false,
|
627 |
+
"special": false
|
628 |
+
},
|
629 |
+
"78": {
|
630 |
+
"content": "<unused71>",
|
631 |
+
"lstrip": false,
|
632 |
+
"normalized": false,
|
633 |
+
"rstrip": false,
|
634 |
+
"single_word": false,
|
635 |
+
"special": false
|
636 |
+
},
|
637 |
+
"79": {
|
638 |
+
"content": "<unused72>",
|
639 |
+
"lstrip": false,
|
640 |
+
"normalized": false,
|
641 |
+
"rstrip": false,
|
642 |
+
"single_word": false,
|
643 |
+
"special": false
|
644 |
+
},
|
645 |
+
"80": {
|
646 |
+
"content": "<unused73>",
|
647 |
+
"lstrip": false,
|
648 |
+
"normalized": false,
|
649 |
+
"rstrip": false,
|
650 |
+
"single_word": false,
|
651 |
+
"special": false
|
652 |
+
},
|
653 |
+
"81": {
|
654 |
+
"content": "<unused74>",
|
655 |
+
"lstrip": false,
|
656 |
+
"normalized": false,
|
657 |
+
"rstrip": false,
|
658 |
+
"single_word": false,
|
659 |
+
"special": false
|
660 |
+
},
|
661 |
+
"82": {
|
662 |
+
"content": "<unused75>",
|
663 |
+
"lstrip": false,
|
664 |
+
"normalized": false,
|
665 |
+
"rstrip": false,
|
666 |
+
"single_word": false,
|
667 |
+
"special": false
|
668 |
+
},
|
669 |
+
"83": {
|
670 |
+
"content": "<unused76>",
|
671 |
+
"lstrip": false,
|
672 |
+
"normalized": false,
|
673 |
+
"rstrip": false,
|
674 |
+
"single_word": false,
|
675 |
+
"special": false
|
676 |
+
},
|
677 |
+
"84": {
|
678 |
+
"content": "<unused77>",
|
679 |
+
"lstrip": false,
|
680 |
+
"normalized": false,
|
681 |
+
"rstrip": false,
|
682 |
+
"single_word": false,
|
683 |
+
"special": false
|
684 |
+
},
|
685 |
+
"85": {
|
686 |
+
"content": "<unused78>",
|
687 |
+
"lstrip": false,
|
688 |
+
"normalized": false,
|
689 |
+
"rstrip": false,
|
690 |
+
"single_word": false,
|
691 |
+
"special": false
|
692 |
+
},
|
693 |
+
"86": {
|
694 |
+
"content": "<unused79>",
|
695 |
+
"lstrip": false,
|
696 |
+
"normalized": false,
|
697 |
+
"rstrip": false,
|
698 |
+
"single_word": false,
|
699 |
+
"special": false
|
700 |
+
},
|
701 |
+
"87": {
|
702 |
+
"content": "<unused80>",
|
703 |
+
"lstrip": false,
|
704 |
+
"normalized": false,
|
705 |
+
"rstrip": false,
|
706 |
+
"single_word": false,
|
707 |
+
"special": false
|
708 |
+
},
|
709 |
+
"88": {
|
710 |
+
"content": "<unused81>",
|
711 |
+
"lstrip": false,
|
712 |
+
"normalized": false,
|
713 |
+
"rstrip": false,
|
714 |
+
"single_word": false,
|
715 |
+
"special": false
|
716 |
+
},
|
717 |
+
"89": {
|
718 |
+
"content": "<unused82>",
|
719 |
+
"lstrip": false,
|
720 |
+
"normalized": false,
|
721 |
+
"rstrip": false,
|
722 |
+
"single_word": false,
|
723 |
+
"special": false
|
724 |
+
},
|
725 |
+
"90": {
|
726 |
+
"content": "<unused83>",
|
727 |
+
"lstrip": false,
|
728 |
+
"normalized": false,
|
729 |
+
"rstrip": false,
|
730 |
+
"single_word": false,
|
731 |
+
"special": false
|
732 |
+
},
|
733 |
+
"91": {
|
734 |
+
"content": "<unused84>",
|
735 |
+
"lstrip": false,
|
736 |
+
"normalized": false,
|
737 |
+
"rstrip": false,
|
738 |
+
"single_word": false,
|
739 |
+
"special": false
|
740 |
+
},
|
741 |
+
"92": {
|
742 |
+
"content": "<unused85>",
|
743 |
+
"lstrip": false,
|
744 |
+
"normalized": false,
|
745 |
+
"rstrip": false,
|
746 |
+
"single_word": false,
|
747 |
+
"special": false
|
748 |
+
},
|
749 |
+
"93": {
|
750 |
+
"content": "<unused86>",
|
751 |
+
"lstrip": false,
|
752 |
+
"normalized": false,
|
753 |
+
"rstrip": false,
|
754 |
+
"single_word": false,
|
755 |
+
"special": false
|
756 |
+
},
|
757 |
+
"94": {
|
758 |
+
"content": "<unused87>",
|
759 |
+
"lstrip": false,
|
760 |
+
"normalized": false,
|
761 |
+
"rstrip": false,
|
762 |
+
"single_word": false,
|
763 |
+
"special": false
|
764 |
+
},
|
765 |
+
"95": {
|
766 |
+
"content": "<unused88>",
|
767 |
+
"lstrip": false,
|
768 |
+
"normalized": false,
|
769 |
+
"rstrip": false,
|
770 |
+
"single_word": false,
|
771 |
+
"special": false
|
772 |
+
},
|
773 |
+
"96": {
|
774 |
+
"content": "<unused89>",
|
775 |
+
"lstrip": false,
|
776 |
+
"normalized": false,
|
777 |
+
"rstrip": false,
|
778 |
+
"single_word": false,
|
779 |
+
"special": false
|
780 |
+
},
|
781 |
+
"97": {
|
782 |
+
"content": "<unused90>",
|
783 |
+
"lstrip": false,
|
784 |
+
"normalized": false,
|
785 |
+
"rstrip": false,
|
786 |
+
"single_word": false,
|
787 |
+
"special": false
|
788 |
+
},
|
789 |
+
"98": {
|
790 |
+
"content": "<unused91>",
|
791 |
+
"lstrip": false,
|
792 |
+
"normalized": false,
|
793 |
+
"rstrip": false,
|
794 |
+
"single_word": false,
|
795 |
+
"special": false
|
796 |
+
},
|
797 |
+
"99": {
|
798 |
+
"content": "<unused92>",
|
799 |
+
"lstrip": false,
|
800 |
+
"normalized": false,
|
801 |
+
"rstrip": false,
|
802 |
+
"single_word": false,
|
803 |
+
"special": false
|
804 |
+
},
|
805 |
+
"100": {
|
806 |
+
"content": "<unused93>",
|
807 |
+
"lstrip": false,
|
808 |
+
"normalized": false,
|
809 |
+
"rstrip": false,
|
810 |
+
"single_word": false,
|
811 |
+
"special": false
|
812 |
+
},
|
813 |
+
"101": {
|
814 |
+
"content": "<unused94>",
|
815 |
+
"lstrip": false,
|
816 |
+
"normalized": false,
|
817 |
+
"rstrip": false,
|
818 |
+
"single_word": false,
|
819 |
+
"special": false
|
820 |
+
},
|
821 |
+
"102": {
|
822 |
+
"content": "<unused95>",
|
823 |
+
"lstrip": false,
|
824 |
+
"normalized": false,
|
825 |
+
"rstrip": false,
|
826 |
+
"single_word": false,
|
827 |
+
"special": false
|
828 |
+
},
|
829 |
+
"103": {
|
830 |
+
"content": "<unused96>",
|
831 |
+
"lstrip": false,
|
832 |
+
"normalized": false,
|
833 |
+
"rstrip": false,
|
834 |
+
"single_word": false,
|
835 |
+
"special": false
|
836 |
+
},
|
837 |
+
"104": {
|
838 |
+
"content": "<unused97>",
|
839 |
+
"lstrip": false,
|
840 |
+
"normalized": false,
|
841 |
+
"rstrip": false,
|
842 |
+
"single_word": false,
|
843 |
+
"special": false
|
844 |
+
},
|
845 |
+
"105": {
|
846 |
+
"content": "<unused98>",
|
847 |
+
"lstrip": false,
|
848 |
+
"normalized": false,
|
849 |
+
"rstrip": false,
|
850 |
+
"single_word": false,
|
851 |
+
"special": false
|
852 |
+
},
|
853 |
+
"106": {
|
854 |
+
"content": "<start_of_turn>",
|
855 |
+
"lstrip": false,
|
856 |
+
"normalized": false,
|
857 |
+
"rstrip": false,
|
858 |
+
"single_word": false,
|
859 |
+
"special": true
|
860 |
+
},
|
861 |
+
"107": {
|
862 |
+
"content": "<end_of_turn>",
|
863 |
+
"lstrip": false,
|
864 |
+
"normalized": false,
|
865 |
+
"rstrip": false,
|
866 |
+
"single_word": false,
|
867 |
+
"special": true
|
868 |
+
},
|
869 |
+
"108": {
|
870 |
+
"content": "\n",
|
871 |
+
"lstrip": false,
|
872 |
+
"normalized": false,
|
873 |
+
"rstrip": false,
|
874 |
+
"single_word": false,
|
875 |
+
"special": false
|
876 |
+
},
|
877 |
+
"109": {
|
878 |
+
"content": "\n\n",
|
879 |
+
"lstrip": false,
|
880 |
+
"normalized": false,
|
881 |
+
"rstrip": false,
|
882 |
+
"single_word": false,
|
883 |
+
"special": false
|
884 |
+
},
|
885 |
+
"110": {
|
886 |
+
"content": "\n\n\n",
|
887 |
+
"lstrip": false,
|
888 |
+
"normalized": false,
|
889 |
+
"rstrip": false,
|
890 |
+
"single_word": false,
|
891 |
+
"special": false
|
892 |
+
},
|
893 |
+
"111": {
|
894 |
+
"content": "\n\n\n\n",
|
895 |
+
"lstrip": false,
|
896 |
+
"normalized": false,
|
897 |
+
"rstrip": false,
|
898 |
+
"single_word": false,
|
899 |
+
"special": false
|
900 |
+
},
|
901 |
+
"112": {
|
902 |
+
"content": "\n\n\n\n\n",
|
903 |
+
"lstrip": false,
|
904 |
+
"normalized": false,
|
905 |
+
"rstrip": false,
|
906 |
+
"single_word": false,
|
907 |
+
"special": false
|
908 |
+
},
|
909 |
+
"113": {
|
910 |
+
"content": "\n\n\n\n\n\n",
|
911 |
+
"lstrip": false,
|
912 |
+
"normalized": false,
|
913 |
+
"rstrip": false,
|
914 |
+
"single_word": false,
|
915 |
+
"special": false
|
916 |
+
},
|
917 |
+
"114": {
|
918 |
+
"content": "\n\n\n\n\n\n\n",
|
919 |
+
"lstrip": false,
|
920 |
+
"normalized": false,
|
921 |
+
"rstrip": false,
|
922 |
+
"single_word": false,
|
923 |
+
"special": false
|
924 |
+
},
|
925 |
+
"115": {
|
926 |
+
"content": "\n\n\n\n\n\n\n\n",
|
927 |
+
"lstrip": false,
|
928 |
+
"normalized": false,
|
929 |
+
"rstrip": false,
|
930 |
+
"single_word": false,
|
931 |
+
"special": false
|
932 |
+
},
|
933 |
+
"116": {
|
934 |
+
"content": "\n\n\n\n\n\n\n\n\n",
|
935 |
+
"lstrip": false,
|
936 |
+
"normalized": false,
|
937 |
+
"rstrip": false,
|
938 |
+
"single_word": false,
|
939 |
+
"special": false
|
940 |
+
},
|
941 |
+
"117": {
|
942 |
+
"content": "\n\n\n\n\n\n\n\n\n\n",
|
943 |
+
"lstrip": false,
|
944 |
+
"normalized": false,
|
945 |
+
"rstrip": false,
|
946 |
+
"single_word": false,
|
947 |
+
"special": false
|
948 |
+
},
|
949 |
+
"118": {
|
950 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n",
|
951 |
+
"lstrip": false,
|
952 |
+
"normalized": false,
|
953 |
+
"rstrip": false,
|
954 |
+
"single_word": false,
|
955 |
+
"special": false
|
956 |
+
},
|
957 |
+
"119": {
|
958 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n",
|
959 |
+
"lstrip": false,
|
960 |
+
"normalized": false,
|
961 |
+
"rstrip": false,
|
962 |
+
"single_word": false,
|
963 |
+
"special": false
|
964 |
+
},
|
965 |
+
"120": {
|
966 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
967 |
+
"lstrip": false,
|
968 |
+
"normalized": false,
|
969 |
+
"rstrip": false,
|
970 |
+
"single_word": false,
|
971 |
+
"special": false
|
972 |
+
},
|
973 |
+
"121": {
|
974 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
975 |
+
"lstrip": false,
|
976 |
+
"normalized": false,
|
977 |
+
"rstrip": false,
|
978 |
+
"single_word": false,
|
979 |
+
"special": false
|
980 |
+
},
|
981 |
+
"122": {
|
982 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
983 |
+
"lstrip": false,
|
984 |
+
"normalized": false,
|
985 |
+
"rstrip": false,
|
986 |
+
"single_word": false,
|
987 |
+
"special": false
|
988 |
+
},
|
989 |
+
"123": {
|
990 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
991 |
+
"lstrip": false,
|
992 |
+
"normalized": false,
|
993 |
+
"rstrip": false,
|
994 |
+
"single_word": false,
|
995 |
+
"special": false
|
996 |
+
},
|
997 |
+
"124": {
|
998 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
999 |
+
"lstrip": false,
|
1000 |
+
"normalized": false,
|
1001 |
+
"rstrip": false,
|
1002 |
+
"single_word": false,
|
1003 |
+
"special": false
|
1004 |
+
},
|
1005 |
+
"125": {
|
1006 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1007 |
+
"lstrip": false,
|
1008 |
+
"normalized": false,
|
1009 |
+
"rstrip": false,
|
1010 |
+
"single_word": false,
|
1011 |
+
"special": false
|
1012 |
+
},
|
1013 |
+
"126": {
|
1014 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1015 |
+
"lstrip": false,
|
1016 |
+
"normalized": false,
|
1017 |
+
"rstrip": false,
|
1018 |
+
"single_word": false,
|
1019 |
+
"special": false
|
1020 |
+
},
|
1021 |
+
"127": {
|
1022 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1023 |
+
"lstrip": false,
|
1024 |
+
"normalized": false,
|
1025 |
+
"rstrip": false,
|
1026 |
+
"single_word": false,
|
1027 |
+
"special": false
|
1028 |
+
},
|
1029 |
+
"128": {
|
1030 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1031 |
+
"lstrip": false,
|
1032 |
+
"normalized": false,
|
1033 |
+
"rstrip": false,
|
1034 |
+
"single_word": false,
|
1035 |
+
"special": false
|
1036 |
+
},
|
1037 |
+
"129": {
|
1038 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1039 |
+
"lstrip": false,
|
1040 |
+
"normalized": false,
|
1041 |
+
"rstrip": false,
|
1042 |
+
"single_word": false,
|
1043 |
+
"special": false
|
1044 |
+
},
|
1045 |
+
"130": {
|
1046 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1047 |
+
"lstrip": false,
|
1048 |
+
"normalized": false,
|
1049 |
+
"rstrip": false,
|
1050 |
+
"single_word": false,
|
1051 |
+
"special": false
|
1052 |
+
},
|
1053 |
+
"131": {
|
1054 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1055 |
+
"lstrip": false,
|
1056 |
+
"normalized": false,
|
1057 |
+
"rstrip": false,
|
1058 |
+
"single_word": false,
|
1059 |
+
"special": false
|
1060 |
+
},
|
1061 |
+
"132": {
|
1062 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1063 |
+
"lstrip": false,
|
1064 |
+
"normalized": false,
|
1065 |
+
"rstrip": false,
|
1066 |
+
"single_word": false,
|
1067 |
+
"special": false
|
1068 |
+
},
|
1069 |
+
"133": {
|
1070 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1071 |
+
"lstrip": false,
|
1072 |
+
"normalized": false,
|
1073 |
+
"rstrip": false,
|
1074 |
+
"single_word": false,
|
1075 |
+
"special": false
|
1076 |
+
},
|
1077 |
+
"134": {
|
1078 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1079 |
+
"lstrip": false,
|
1080 |
+
"normalized": false,
|
1081 |
+
"rstrip": false,
|
1082 |
+
"single_word": false,
|
1083 |
+
"special": false
|
1084 |
+
},
|
1085 |
+
"135": {
|
1086 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1087 |
+
"lstrip": false,
|
1088 |
+
"normalized": false,
|
1089 |
+
"rstrip": false,
|
1090 |
+
"single_word": false,
|
1091 |
+
"special": false
|
1092 |
+
},
|
1093 |
+
"136": {
|
1094 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1095 |
+
"lstrip": false,
|
1096 |
+
"normalized": false,
|
1097 |
+
"rstrip": false,
|
1098 |
+
"single_word": false,
|
1099 |
+
"special": false
|
1100 |
+
},
|
1101 |
+
"137": {
|
1102 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1103 |
+
"lstrip": false,
|
1104 |
+
"normalized": false,
|
1105 |
+
"rstrip": false,
|
1106 |
+
"single_word": false,
|
1107 |
+
"special": false
|
1108 |
+
},
|
1109 |
+
"138": {
|
1110 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
1111 |
+
"lstrip": false,
|
1112 |
+
"normalized": false,
|
1113 |
+
"rstrip": false,
|
1114 |
+
"single_word": false,
|
1115 |
+
"special": false
|
1116 |
+
},
|
1117 |
+
"139": {
|
1118 |
+
"content": "▁▁",
|
1119 |
+
"lstrip": false,
|
1120 |
+
"normalized": false,
|
1121 |
+
"rstrip": false,
|
1122 |
+
"single_word": false,
|
1123 |
+
"special": false
|
1124 |
+
},
|
1125 |
+
"140": {
|
1126 |
+
"content": "▁▁▁",
|
1127 |
+
"lstrip": false,
|
1128 |
+
"normalized": false,
|
1129 |
+
"rstrip": false,
|
1130 |
+
"single_word": false,
|
1131 |
+
"special": false
|
1132 |
+
},
|
1133 |
+
"141": {
|
1134 |
+
"content": "▁▁▁▁",
|
1135 |
+
"lstrip": false,
|
1136 |
+
"normalized": false,
|
1137 |
+
"rstrip": false,
|
1138 |
+
"single_word": false,
|
1139 |
+
"special": false
|
1140 |
+
},
|
1141 |
+
"142": {
|
1142 |
+
"content": "▁▁▁▁▁",
|
1143 |
+
"lstrip": false,
|
1144 |
+
"normalized": false,
|
1145 |
+
"rstrip": false,
|
1146 |
+
"single_word": false,
|
1147 |
+
"special": false
|
1148 |
+
},
|
1149 |
+
"143": {
|
1150 |
+
"content": "▁▁▁▁▁▁",
|
1151 |
+
"lstrip": false,
|
1152 |
+
"normalized": false,
|
1153 |
+
"rstrip": false,
|
1154 |
+
"single_word": false,
|
1155 |
+
"special": false
|
1156 |
+
},
|
1157 |
+
"144": {
|
1158 |
+
"content": "▁▁▁▁▁▁▁",
|
1159 |
+
"lstrip": false,
|
1160 |
+
"normalized": false,
|
1161 |
+
"rstrip": false,
|
1162 |
+
"single_word": false,
|
1163 |
+
"special": false
|
1164 |
+
},
|
1165 |
+
"145": {
|
1166 |
+
"content": "▁▁▁▁▁▁▁▁",
|
1167 |
+
"lstrip": false,
|
1168 |
+
"normalized": false,
|
1169 |
+
"rstrip": false,
|
1170 |
+
"single_word": false,
|
1171 |
+
"special": false
|
1172 |
+
},
|
1173 |
+
"146": {
|
1174 |
+
"content": "▁▁▁▁▁▁▁▁▁",
|
1175 |
+
"lstrip": false,
|
1176 |
+
"normalized": false,
|
1177 |
+
"rstrip": false,
|
1178 |
+
"single_word": false,
|
1179 |
+
"special": false
|
1180 |
+
},
|
1181 |
+
"147": {
|
1182 |
+
"content": "▁▁▁▁▁▁▁▁▁▁",
|
1183 |
+
"lstrip": false,
|
1184 |
+
"normalized": false,
|
1185 |
+
"rstrip": false,
|
1186 |
+
"single_word": false,
|
1187 |
+
"special": false
|
1188 |
+
},
|
1189 |
+
"148": {
|
1190 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁",
|
1191 |
+
"lstrip": false,
|
1192 |
+
"normalized": false,
|
1193 |
+
"rstrip": false,
|
1194 |
+
"single_word": false,
|
1195 |
+
"special": false
|
1196 |
+
},
|
1197 |
+
"149": {
|
1198 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁",
|
1199 |
+
"lstrip": false,
|
1200 |
+
"normalized": false,
|
1201 |
+
"rstrip": false,
|
1202 |
+
"single_word": false,
|
1203 |
+
"special": false
|
1204 |
+
},
|
1205 |
+
"150": {
|
1206 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1207 |
+
"lstrip": false,
|
1208 |
+
"normalized": false,
|
1209 |
+
"rstrip": false,
|
1210 |
+
"single_word": false,
|
1211 |
+
"special": false
|
1212 |
+
},
|
1213 |
+
"151": {
|
1214 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1215 |
+
"lstrip": false,
|
1216 |
+
"normalized": false,
|
1217 |
+
"rstrip": false,
|
1218 |
+
"single_word": false,
|
1219 |
+
"special": false
|
1220 |
+
},
|
1221 |
+
"152": {
|
1222 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1223 |
+
"lstrip": false,
|
1224 |
+
"normalized": false,
|
1225 |
+
"rstrip": false,
|
1226 |
+
"single_word": false,
|
1227 |
+
"special": false
|
1228 |
+
},
|
1229 |
+
"153": {
|
1230 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1231 |
+
"lstrip": false,
|
1232 |
+
"normalized": false,
|
1233 |
+
"rstrip": false,
|
1234 |
+
"single_word": false,
|
1235 |
+
"special": false
|
1236 |
+
},
|
1237 |
+
"154": {
|
1238 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1239 |
+
"lstrip": false,
|
1240 |
+
"normalized": false,
|
1241 |
+
"rstrip": false,
|
1242 |
+
"single_word": false,
|
1243 |
+
"special": false
|
1244 |
+
},
|
1245 |
+
"155": {
|
1246 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1247 |
+
"lstrip": false,
|
1248 |
+
"normalized": false,
|
1249 |
+
"rstrip": false,
|
1250 |
+
"single_word": false,
|
1251 |
+
"special": false
|
1252 |
+
},
|
1253 |
+
"156": {
|
1254 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1255 |
+
"lstrip": false,
|
1256 |
+
"normalized": false,
|
1257 |
+
"rstrip": false,
|
1258 |
+
"single_word": false,
|
1259 |
+
"special": false
|
1260 |
+
},
|
1261 |
+
"157": {
|
1262 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1263 |
+
"lstrip": false,
|
1264 |
+
"normalized": false,
|
1265 |
+
"rstrip": false,
|
1266 |
+
"single_word": false,
|
1267 |
+
"special": false
|
1268 |
+
},
|
1269 |
+
"158": {
|
1270 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1271 |
+
"lstrip": false,
|
1272 |
+
"normalized": false,
|
1273 |
+
"rstrip": false,
|
1274 |
+
"single_word": false,
|
1275 |
+
"special": false
|
1276 |
+
},
|
1277 |
+
"159": {
|
1278 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1279 |
+
"lstrip": false,
|
1280 |
+
"normalized": false,
|
1281 |
+
"rstrip": false,
|
1282 |
+
"single_word": false,
|
1283 |
+
"special": false
|
1284 |
+
},
|
1285 |
+
"160": {
|
1286 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1287 |
+
"lstrip": false,
|
1288 |
+
"normalized": false,
|
1289 |
+
"rstrip": false,
|
1290 |
+
"single_word": false,
|
1291 |
+
"special": false
|
1292 |
+
},
|
1293 |
+
"161": {
|
1294 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1295 |
+
"lstrip": false,
|
1296 |
+
"normalized": false,
|
1297 |
+
"rstrip": false,
|
1298 |
+
"single_word": false,
|
1299 |
+
"special": false
|
1300 |
+
},
|
1301 |
+
"162": {
|
1302 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1303 |
+
"lstrip": false,
|
1304 |
+
"normalized": false,
|
1305 |
+
"rstrip": false,
|
1306 |
+
"single_word": false,
|
1307 |
+
"special": false
|
1308 |
+
},
|
1309 |
+
"163": {
|
1310 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1311 |
+
"lstrip": false,
|
1312 |
+
"normalized": false,
|
1313 |
+
"rstrip": false,
|
1314 |
+
"single_word": false,
|
1315 |
+
"special": false
|
1316 |
+
},
|
1317 |
+
"164": {
|
1318 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1319 |
+
"lstrip": false,
|
1320 |
+
"normalized": false,
|
1321 |
+
"rstrip": false,
|
1322 |
+
"single_word": false,
|
1323 |
+
"special": false
|
1324 |
+
},
|
1325 |
+
"165": {
|
1326 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1327 |
+
"lstrip": false,
|
1328 |
+
"normalized": false,
|
1329 |
+
"rstrip": false,
|
1330 |
+
"single_word": false,
|
1331 |
+
"special": false
|
1332 |
+
},
|
1333 |
+
"166": {
|
1334 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1335 |
+
"lstrip": false,
|
1336 |
+
"normalized": false,
|
1337 |
+
"rstrip": false,
|
1338 |
+
"single_word": false,
|
1339 |
+
"special": false
|
1340 |
+
},
|
1341 |
+
"167": {
|
1342 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1343 |
+
"lstrip": false,
|
1344 |
+
"normalized": false,
|
1345 |
+
"rstrip": false,
|
1346 |
+
"single_word": false,
|
1347 |
+
"special": false
|
1348 |
+
},
|
1349 |
+
"168": {
|
1350 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
1351 |
+
"lstrip": false,
|
1352 |
+
"normalized": false,
|
1353 |
+
"rstrip": false,
|
1354 |
+
"single_word": false,
|
1355 |
+
"special": false
|
1356 |
+
},
|
1357 |
+
"169": {
|
1358 |
+
"content": "<table>",
|
1359 |
+
"lstrip": false,
|
1360 |
+
"normalized": false,
|
1361 |
+
"rstrip": false,
|
1362 |
+
"single_word": false,
|
1363 |
+
"special": false
|
1364 |
+
},
|
1365 |
+
"170": {
|
1366 |
+
"content": "<caption>",
|
1367 |
+
"lstrip": false,
|
1368 |
+
"normalized": false,
|
1369 |
+
"rstrip": false,
|
1370 |
+
"single_word": false,
|
1371 |
+
"special": false
|
1372 |
+
},
|
1373 |
+
"171": {
|
1374 |
+
"content": "<thead>",
|
1375 |
+
"lstrip": false,
|
1376 |
+
"normalized": false,
|
1377 |
+
"rstrip": false,
|
1378 |
+
"single_word": false,
|
1379 |
+
"special": false
|
1380 |
+
},
|
1381 |
+
"172": {
|
1382 |
+
"content": "<tbody>",
|
1383 |
+
"lstrip": false,
|
1384 |
+
"normalized": false,
|
1385 |
+
"rstrip": false,
|
1386 |
+
"single_word": false,
|
1387 |
+
"special": false
|
1388 |
+
},
|
1389 |
+
"173": {
|
1390 |
+
"content": "<tfoot>",
|
1391 |
+
"lstrip": false,
|
1392 |
+
"normalized": false,
|
1393 |
+
"rstrip": false,
|
1394 |
+
"single_word": false,
|
1395 |
+
"special": false
|
1396 |
+
},
|
1397 |
+
"174": {
|
1398 |
+
"content": "<tr>",
|
1399 |
+
"lstrip": false,
|
1400 |
+
"normalized": false,
|
1401 |
+
"rstrip": false,
|
1402 |
+
"single_word": false,
|
1403 |
+
"special": false
|
1404 |
+
},
|
1405 |
+
"175": {
|
1406 |
+
"content": "<th>",
|
1407 |
+
"lstrip": false,
|
1408 |
+
"normalized": false,
|
1409 |
+
"rstrip": false,
|
1410 |
+
"single_word": false,
|
1411 |
+
"special": false
|
1412 |
+
},
|
1413 |
+
"176": {
|
1414 |
+
"content": "<td>",
|
1415 |
+
"lstrip": false,
|
1416 |
+
"normalized": false,
|
1417 |
+
"rstrip": false,
|
1418 |
+
"single_word": false,
|
1419 |
+
"special": false
|
1420 |
+
},
|
1421 |
+
"177": {
|
1422 |
+
"content": "</table>",
|
1423 |
+
"lstrip": false,
|
1424 |
+
"normalized": false,
|
1425 |
+
"rstrip": false,
|
1426 |
+
"single_word": false,
|
1427 |
+
"special": false
|
1428 |
+
},
|
1429 |
+
"178": {
|
1430 |
+
"content": "</caption>",
|
1431 |
+
"lstrip": false,
|
1432 |
+
"normalized": false,
|
1433 |
+
"rstrip": false,
|
1434 |
+
"single_word": false,
|
1435 |
+
"special": false
|
1436 |
+
},
|
1437 |
+
"179": {
|
1438 |
+
"content": "</thead>",
|
1439 |
+
"lstrip": false,
|
1440 |
+
"normalized": false,
|
1441 |
+
"rstrip": false,
|
1442 |
+
"single_word": false,
|
1443 |
+
"special": false
|
1444 |
+
},
|
1445 |
+
"180": {
|
1446 |
+
"content": "</tbody>",
|
1447 |
+
"lstrip": false,
|
1448 |
+
"normalized": false,
|
1449 |
+
"rstrip": false,
|
1450 |
+
"single_word": false,
|
1451 |
+
"special": false
|
1452 |
+
},
|
1453 |
+
"181": {
|
1454 |
+
"content": "</tfoot>",
|
1455 |
+
"lstrip": false,
|
1456 |
+
"normalized": false,
|
1457 |
+
"rstrip": false,
|
1458 |
+
"single_word": false,
|
1459 |
+
"special": false
|
1460 |
+
},
|
1461 |
+
"182": {
|
1462 |
+
"content": "</tr>",
|
1463 |
+
"lstrip": false,
|
1464 |
+
"normalized": false,
|
1465 |
+
"rstrip": false,
|
1466 |
+
"single_word": false,
|
1467 |
+
"special": false
|
1468 |
+
},
|
1469 |
+
"183": {
|
1470 |
+
"content": "</th>",
|
1471 |
+
"lstrip": false,
|
1472 |
+
"normalized": false,
|
1473 |
+
"rstrip": false,
|
1474 |
+
"single_word": false,
|
1475 |
+
"special": false
|
1476 |
+
},
|
1477 |
+
"184": {
|
1478 |
+
"content": "</td>",
|
1479 |
+
"lstrip": false,
|
1480 |
+
"normalized": false,
|
1481 |
+
"rstrip": false,
|
1482 |
+
"single_word": false,
|
1483 |
+
"special": false
|
1484 |
+
},
|
1485 |
+
"185": {
|
1486 |
+
"content": "<h1>",
|
1487 |
+
"lstrip": false,
|
1488 |
+
"normalized": false,
|
1489 |
+
"rstrip": false,
|
1490 |
+
"single_word": false,
|
1491 |
+
"special": false
|
1492 |
+
},
|
1493 |
+
"186": {
|
1494 |
+
"content": "<h2>",
|
1495 |
+
"lstrip": false,
|
1496 |
+
"normalized": false,
|
1497 |
+
"rstrip": false,
|
1498 |
+
"single_word": false,
|
1499 |
+
"special": false
|
1500 |
+
},
|
1501 |
+
"187": {
|
1502 |
+
"content": "<h3>",
|
1503 |
+
"lstrip": false,
|
1504 |
+
"normalized": false,
|
1505 |
+
"rstrip": false,
|
1506 |
+
"single_word": false,
|
1507 |
+
"special": false
|
1508 |
+
},
|
1509 |
+
"188": {
|
1510 |
+
"content": "<h4>",
|
1511 |
+
"lstrip": false,
|
1512 |
+
"normalized": false,
|
1513 |
+
"rstrip": false,
|
1514 |
+
"single_word": false,
|
1515 |
+
"special": false
|
1516 |
+
},
|
1517 |
+
"189": {
|
1518 |
+
"content": "<h5>",
|
1519 |
+
"lstrip": false,
|
1520 |
+
"normalized": false,
|
1521 |
+
"rstrip": false,
|
1522 |
+
"single_word": false,
|
1523 |
+
"special": false
|
1524 |
+
},
|
1525 |
+
"190": {
|
1526 |
+
"content": "<h6>",
|
1527 |
+
"lstrip": false,
|
1528 |
+
"normalized": false,
|
1529 |
+
"rstrip": false,
|
1530 |
+
"single_word": false,
|
1531 |
+
"special": false
|
1532 |
+
},
|
1533 |
+
"191": {
|
1534 |
+
"content": "<blockquote>",
|
1535 |
+
"lstrip": false,
|
1536 |
+
"normalized": false,
|
1537 |
+
"rstrip": false,
|
1538 |
+
"single_word": false,
|
1539 |
+
"special": false
|
1540 |
+
},
|
1541 |
+
"192": {
|
1542 |
+
"content": "</h1>",
|
1543 |
+
"lstrip": false,
|
1544 |
+
"normalized": false,
|
1545 |
+
"rstrip": false,
|
1546 |
+
"single_word": false,
|
1547 |
+
"special": false
|
1548 |
+
},
|
1549 |
+
"193": {
|
1550 |
+
"content": "</h2>",
|
1551 |
+
"lstrip": false,
|
1552 |
+
"normalized": false,
|
1553 |
+
"rstrip": false,
|
1554 |
+
"single_word": false,
|
1555 |
+
"special": false
|
1556 |
+
},
|
1557 |
+
"194": {
|
1558 |
+
"content": "</h3>",
|
1559 |
+
"lstrip": false,
|
1560 |
+
"normalized": false,
|
1561 |
+
"rstrip": false,
|
1562 |
+
"single_word": false,
|
1563 |
+
"special": false
|
1564 |
+
},
|
1565 |
+
"195": {
|
1566 |
+
"content": "</h4>",
|
1567 |
+
"lstrip": false,
|
1568 |
+
"normalized": false,
|
1569 |
+
"rstrip": false,
|
1570 |
+
"single_word": false,
|
1571 |
+
"special": false
|
1572 |
+
},
|
1573 |
+
"196": {
|
1574 |
+
"content": "</h5>",
|
1575 |
+
"lstrip": false,
|
1576 |
+
"normalized": false,
|
1577 |
+
"rstrip": false,
|
1578 |
+
"single_word": false,
|
1579 |
+
"special": false
|
1580 |
+
},
|
1581 |
+
"197": {
|
1582 |
+
"content": "</h6>",
|
1583 |
+
"lstrip": false,
|
1584 |
+
"normalized": false,
|
1585 |
+
"rstrip": false,
|
1586 |
+
"single_word": false,
|
1587 |
+
"special": false
|
1588 |
+
},
|
1589 |
+
"198": {
|
1590 |
+
"content": "</blockquote>",
|
1591 |
+
"lstrip": false,
|
1592 |
+
"normalized": false,
|
1593 |
+
"rstrip": false,
|
1594 |
+
"single_word": false,
|
1595 |
+
"special": false
|
1596 |
+
},
|
1597 |
+
"199": {
|
1598 |
+
"content": "<strong>",
|
1599 |
+
"lstrip": false,
|
1600 |
+
"normalized": false,
|
1601 |
+
"rstrip": false,
|
1602 |
+
"single_word": false,
|
1603 |
+
"special": false
|
1604 |
+
},
|
1605 |
+
"200": {
|
1606 |
+
"content": "<em>",
|
1607 |
+
"lstrip": false,
|
1608 |
+
"normalized": false,
|
1609 |
+
"rstrip": false,
|
1610 |
+
"single_word": false,
|
1611 |
+
"special": false
|
1612 |
+
},
|
1613 |
+
"201": {
|
1614 |
+
"content": "<b>",
|
1615 |
+
"lstrip": false,
|
1616 |
+
"normalized": false,
|
1617 |
+
"rstrip": false,
|
1618 |
+
"single_word": false,
|
1619 |
+
"special": false
|
1620 |
+
},
|
1621 |
+
"202": {
|
1622 |
+
"content": "<i>",
|
1623 |
+
"lstrip": false,
|
1624 |
+
"normalized": false,
|
1625 |
+
"rstrip": false,
|
1626 |
+
"single_word": false,
|
1627 |
+
"special": false
|
1628 |
+
},
|
1629 |
+
"203": {
|
1630 |
+
"content": "<u>",
|
1631 |
+
"lstrip": false,
|
1632 |
+
"normalized": false,
|
1633 |
+
"rstrip": false,
|
1634 |
+
"single_word": false,
|
1635 |
+
"special": false
|
1636 |
+
},
|
1637 |
+
"204": {
|
1638 |
+
"content": "<s>",
|
1639 |
+
"lstrip": false,
|
1640 |
+
"normalized": false,
|
1641 |
+
"rstrip": false,
|
1642 |
+
"single_word": false,
|
1643 |
+
"special": false
|
1644 |
+
},
|
1645 |
+
"205": {
|
1646 |
+
"content": "<sub>",
|
1647 |
+
"lstrip": false,
|
1648 |
+
"normalized": false,
|
1649 |
+
"rstrip": false,
|
1650 |
+
"single_word": false,
|
1651 |
+
"special": false
|
1652 |
+
},
|
1653 |
+
"206": {
|
1654 |
+
"content": "<sup>",
|
1655 |
+
"lstrip": false,
|
1656 |
+
"normalized": false,
|
1657 |
+
"rstrip": false,
|
1658 |
+
"single_word": false,
|
1659 |
+
"special": false
|
1660 |
+
},
|
1661 |
+
"207": {
|
1662 |
+
"content": "<code>",
|
1663 |
+
"lstrip": false,
|
1664 |
+
"normalized": false,
|
1665 |
+
"rstrip": false,
|
1666 |
+
"single_word": false,
|
1667 |
+
"special": false
|
1668 |
+
},
|
1669 |
+
"208": {
|
1670 |
+
"content": "</strong>",
|
1671 |
+
"lstrip": false,
|
1672 |
+
"normalized": false,
|
1673 |
+
"rstrip": false,
|
1674 |
+
"single_word": false,
|
1675 |
+
"special": false
|
1676 |
+
},
|
1677 |
+
"209": {
|
1678 |
+
"content": "</em>",
|
1679 |
+
"lstrip": false,
|
1680 |
+
"normalized": false,
|
1681 |
+
"rstrip": false,
|
1682 |
+
"single_word": false,
|
1683 |
+
"special": false
|
1684 |
+
},
|
1685 |
+
"210": {
|
1686 |
+
"content": "</b>",
|
1687 |
+
"lstrip": false,
|
1688 |
+
"normalized": false,
|
1689 |
+
"rstrip": false,
|
1690 |
+
"single_word": false,
|
1691 |
+
"special": false
|
1692 |
+
},
|
1693 |
+
"211": {
|
1694 |
+
"content": "</i>",
|
1695 |
+
"lstrip": false,
|
1696 |
+
"normalized": false,
|
1697 |
+
"rstrip": false,
|
1698 |
+
"single_word": false,
|
1699 |
+
"special": false
|
1700 |
+
},
|
1701 |
+
"212": {
|
1702 |
+
"content": "</u>",
|
1703 |
+
"lstrip": false,
|
1704 |
+
"normalized": false,
|
1705 |
+
"rstrip": false,
|
1706 |
+
"single_word": false,
|
1707 |
+
"special": false
|
1708 |
+
},
|
1709 |
+
"213": {
|
1710 |
+
"content": "</s>",
|
1711 |
+
"lstrip": false,
|
1712 |
+
"normalized": false,
|
1713 |
+
"rstrip": false,
|
1714 |
+
"single_word": false,
|
1715 |
+
"special": false
|
1716 |
+
},
|
1717 |
+
"214": {
|
1718 |
+
"content": "</sub>",
|
1719 |
+
"lstrip": false,
|
1720 |
+
"normalized": false,
|
1721 |
+
"rstrip": false,
|
1722 |
+
"single_word": false,
|
1723 |
+
"special": false
|
1724 |
+
},
|
1725 |
+
"215": {
|
1726 |
+
"content": "</sup>",
|
1727 |
+
"lstrip": false,
|
1728 |
+
"normalized": false,
|
1729 |
+
"rstrip": false,
|
1730 |
+
"single_word": false,
|
1731 |
+
"special": false
|
1732 |
+
},
|
1733 |
+
"216": {
|
1734 |
+
"content": "</code>",
|
1735 |
+
"lstrip": false,
|
1736 |
+
"normalized": false,
|
1737 |
+
"rstrip": false,
|
1738 |
+
"single_word": false,
|
1739 |
+
"special": false
|
1740 |
+
}
|
1741 |
+
},
|
1742 |
+
"additional_special_tokens": [
|
1743 |
+
"<start_of_turn>",
|
1744 |
+
"<end_of_turn>"
|
1745 |
+
],
|
1746 |
+
"bos_token": "<bos>",
|
1747 |
+
"chat_template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}",
|
1748 |
+
"clean_up_tokenization_spaces": false,
|
1749 |
+
"eos_token": "<eos>",
|
1750 |
+
"model_max_length": 1000000000000000019884624838656,
|
1751 |
+
"pad_token": "<pad>",
|
1752 |
+
"sp_model_kwargs": {},
|
1753 |
+
"spaces_between_special_tokens": false,
|
1754 |
+
"tokenizer_class": "GemmaTokenizer",
|
1755 |
+
"unk_token": "<unk>",
|
1756 |
+
"use_default_system_prompt": false
|
1757 |
+
}
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13522b592f23109511d88b95e6d6206df14b800e4f018049ec7f900b735f9d03
|
3 |
+
size 5176
|