reflectio commited on
Commit
a7bd119
1 Parent(s): 78ba2fc

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
ada_vocab_factory.py ADDED
@@ -0,0 +1,371 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import warnings
3
+ import hashlib
4
+ import os
5
+ from typing import List, Optional, Tuple, Union
6
+ from dataclasses import dataclass
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint
11
+ from torch import nn
12
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
13
+
14
+ from transformers.models.llama.modeling_llama import LlamaModel, LlamaPreTrainedModel, LlamaForCausalLM
15
+ from transformers.models.gemma.modeling_gemma import GemmaModel, GemmaPreTrainedModel, GemmaForCausalLM
16
+ from transformers.models.qwen2.modeling_qwen2 import Qwen2Model, Qwen2PreTrainedModel, Qwen2ForCausalLM
17
+ from transformers.modeling_outputs import CausalLMOutputWithPast
18
+ from transformers.cache_utils import Cache
19
+
20
+ from models.modeling_gemma import GemmaForCausalLM
21
+ from models.modeling_qwen2 import Qwen2ForCausalLM
22
+
23
+
24
+ def svd_with_cache(matrix, cache_dir, max_rank=1024):
25
+ """
26
+ SVD with cache mechanism to avoid repeated SVD computation.
27
+ SVD can be very slow for large matrices, so we cache the results.
28
+ """
29
+ in_dim, out_dim = matrix.shape
30
+ # slice_weight = matrix[::1000, :] # too sensitive to precision
31
+ # weight_hash = hashlib.md5(slice_weight.detach().cpu().numpy().tobytes()).hexdigest()
32
+ weight_hash = in_dim * out_dim
33
+ cache_file = os.path.join(cache_dir, f'{weight_hash}.pt')
34
+
35
+ if not os.path.exists(cache_dir):
36
+ os.makedirs(cache_dir)
37
+
38
+ if os.path.exists(cache_file):
39
+ # Load cached SVD results
40
+
41
+ U, S, Vh = torch.load(cache_file)
42
+ else:
43
+ # Perform SVD and cache the results
44
+
45
+ U, S, Vh = torch.linalg.svd(matrix.float())
46
+ U = U[:, :max_rank].clone() # Shape: [out_features, rank]
47
+ S = S[:max_rank].clone() # Shape: [rank]
48
+ Vh = Vh[:max_rank, :].clone() # Shape: [rank, in_features]
49
+ # Save the SVD results to cache
50
+ torch.save((U, S, Vh), cache_file)
51
+ return U, S, Vh
52
+
53
+ def create_factorized_compression_for_linear(source_linear, rank, svd_cache_dir='experiment_cache/'):
54
+ """
55
+ Adapt from: https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/cli_svd.py
56
+ Create a factorized compression for a given linear layer using SVD.
57
+ Args:
58
+ source_linear (nn.Linear): The original linear layer to be compressed.
59
+ rank (int, optional): The rank for the factorization. If None, it will be calculated based on rank_factor.
60
+ rank_factor (float, optional): The factor to determine the rank if rank is not provided. Default is 0.3.
61
+ Returns:
62
+ nn.Sequential: A sequential container of the compressed linear layers.
63
+ """
64
+
65
+ with torch.no_grad():
66
+ dtype = source_linear.weight.dtype
67
+ # Check if the source linear layer has a bias term
68
+ if hasattr(source_linear, 'bias'):
69
+ bias = source_linear.bias
70
+ else:
71
+ bias = None
72
+ # Calculate the total number of parameters in the source linear layer
73
+ source_num_params = sum(param.numel() for param in source_linear.parameters())
74
+ # Get the weight matrix of the source linear layer
75
+ source_linear_weight = source_linear.weight.data
76
+ # Ensure rank is less than the minimum dimension of the weight matrix
77
+ assert rank < min(source_linear_weight.shape)
78
+ # Perform SVD on the weight matrix
79
+ # U, S, Vh = torch.linalg.svd(source_linear_weight.float())
80
+ U, S, Vh = svd_with_cache(source_linear_weight, svd_cache_dir)
81
+ # Truncate U, S, Vh to the specified rank
82
+ U = U[:, :rank].contiguous() # Shape: [out_features, rank]
83
+ S = S[:rank].contiguous() # Shape: [rank]
84
+ Vh = Vh[:rank, :].contiguous() # Shape: [rank, in_features]
85
+ # Incorporate singular values into U
86
+ U = U @ torch.diag(S) # Shape: [out_features, rank]
87
+ # Flatten U and Vh for quantile computation
88
+ U_flatten = U.flatten()
89
+ Vh_flatten = Vh.flatten()
90
+ # Define the maximum quantization size
91
+ max_quant_size = 2**23
92
+ # Compute high and low quantile values for clamping
93
+ if len(U_flatten) + len(Vh_flatten) >= max_quant_size:
94
+ dist2 = U_flatten[:min(len(U_flatten), max_quant_size)]
95
+ dist3 = Vh_flatten[:min(len(Vh_flatten), max_quant_size)]
96
+ hi_val = max(torch.quantile(dist3, 1), torch.quantile(dist2, 1))
97
+ else:
98
+ dist = torch.cat([U_flatten, Vh_flatten])
99
+ hi_val = torch.quantile(dist, 1)
100
+ low_val = -hi_val
101
+ # Clamp U and Vh to the quantile values
102
+ U = U.clamp(low_val, hi_val)
103
+ Vh = Vh.clamp(low_val, hi_val)
104
+ # Create the down projection linear layer (Vh)
105
+ lora_down = nn.Linear(Vh.shape[1], Vh.shape[0], dtype=dtype, bias=False, device=source_linear_weight.device)
106
+ lora_down.weight.data = Vh.to(device=source_linear_weight.device, dtype=dtype)
107
+ # Create the up projection linear layer (U)
108
+ lora_up = nn.Linear(U.shape[1], U.shape[0], dtype=dtype, bias=bias is not None, device=source_linear_weight.device)
109
+ lora_up.weight.data = U.to(device=source_linear_weight.device, dtype=dtype)
110
+ # If the original linear layer had a bias, copy it to the up projection layer
111
+ if bias is not None:
112
+ lora_up.bias = nn.Parameter(bias.clone())
113
+ # Print compression ratio (for debugging purposes)
114
+ #print('compression', sum(param.numel() for param in ret.parameters()) / source_num_params)
115
+ return lora_down, lora_up
116
+
117
+
118
+ @dataclass
119
+ class AdaCausalLMOutputWithPast(CausalLMOutputWithPast):
120
+ # keep original `loss` for `training_step` and `predictions_step`,
121
+ # Add 3 sub losses: `lm_loss`, `mask_loss`, `topk_loss`
122
+ # add `lm_head_logits` for original lm_head logits, which is optional (required for train and eval, not required for generation)
123
+ lm_head_logits: Optional[torch.FloatTensor] = None
124
+ lm_loss: Optional[torch.FloatTensor] = None
125
+ mask_loss: Optional[torch.FloatTensor] = None
126
+ topk_loss: Optional[torch.FloatTensor] = None
127
+
128
+ class AdaVocabHead_MLP(nn.Module):
129
+ # No improvement compare to LoRA solution
130
+ def __init__(self, lm_head, sub_vocab_dim, activation_func=torch.nn.GELU()):
131
+ hidden_size, vocab_size = lm_head.in_features, lm_head.out_features
132
+ super().__init__()
133
+
134
+ self.A = nn.Linear(hidden_size, sub_vocab_dim, bias=False)
135
+ self.B = nn.Linear(sub_vocab_dim, sub_vocab_dim, bias=True)
136
+ self.C = nn.Linear(sub_vocab_dim, vocab_size, bias=False)
137
+ std_dev = 1 / math.sqrt(sub_vocab_dim)
138
+ nn.init.normal_(self.A.weight, 0, std_dev)
139
+ nn.init.normal_(self.B.weight, 0, std_dev)
140
+ nn.init.zeros_(self.C.weight)
141
+ self.activation_func = activation_func
142
+
143
+ def forward(self, x):
144
+ # x.shape: (..., hidden_size),
145
+ # A.shape: (hidden_size, sub_vocab_dim)
146
+ # B.shape: (sub_vocab_dim, sub_vocab_dim)
147
+ # C.shape: (sub_vocab_dim, vocab_size)
148
+ logits = self.A(x) # logits.shape: (..., sub_vocab_dim)
149
+ logits = self.activation_func(logits)
150
+ logits = self.B(logits) # logits.shape: (..., sub_vocab_dim)
151
+ # logits = self.activation_func(logits)
152
+ ada_vocab_logits = self.C(logits) # ada_vocab_logits.shape: (..., vocab_size)
153
+
154
+ return ada_vocab_logits
155
+
156
+ class AdaVocabHead_LORA(nn.Module):
157
+ def __init__(self, lm_head, sub_vocab_dim, svd=False):
158
+ hidden_size, vocab_size = lm_head.in_features, lm_head.out_features
159
+ super().__init__()
160
+ if svd: # SVD initialization
161
+ self.A, self.B = create_factorized_compression_for_linear(lm_head, sub_vocab_dim)
162
+ else: # Random initialization
163
+ self.A = nn.Linear(hidden_size, sub_vocab_dim, bias=False)
164
+ self.B = nn.Linear(sub_vocab_dim, vocab_size, bias=False)
165
+ std_dev = 1 / math.sqrt(sub_vocab_dim)
166
+ nn.init.normal_(self.A.weight, 0, std_dev)
167
+ nn.init.zeros_(self.B.weight)
168
+
169
+ def forward(self, x):
170
+ # x.shape: (..., hidden_size), A.shape: (hidden_size, sub_vocab_dim), B.shape: (sub_vocab_dim, vocab_size)
171
+ logits = self.A(x)
172
+ ada_vocab_logits = self.B(logits) # ada_vocab_logits.shape: (..., vocab_size)
173
+ return ada_vocab_logits
174
+
175
+ def create_AdaVocabCausalLM(base_class): # Support LLama, Qwen2, Gemma
176
+ class AdaVocabCausalLM(base_class):
177
+ # TODO: Check the function of this variable and if it affects the AdaVocab Head model
178
+ _tied_weights_keys = ["lm_head.weight"]
179
+
180
+ def __init__(self, config):
181
+ super().__init__(config)
182
+ self.sub_vocab_dim = config.ADA_DIM
183
+ self.offload_tag = False
184
+ # AdaVocabHead is already initialized with random weights/ SVD weights
185
+ # so no need to use `self.post_init` method after this
186
+ if config.ADA_ACT:
187
+ self.adavocab_head = AdaVocabHead_MLP(self.lm_head, self.sub_vocab_dim, activation_func=nn.GELU())
188
+ else:
189
+ self.adavocab_head = AdaVocabHead_LORA(self.lm_head, self.sub_vocab_dim, svd=config.ADA_SVD)
190
+
191
+ self.freeze_original_model()
192
+
193
+ def freeze_original_model(self):
194
+ # freeze orginal llama except AdaVocabHead
195
+ for param in self.model.parameters():
196
+ param.requires_grad = False
197
+ for param in self.lm_head.parameters():
198
+ param.requires_grad = False
199
+ for param in self.adavocab_head.parameters():
200
+ param.requires_grad = True
201
+
202
+ def offload_lm_head(self):
203
+ self.offload_tag = True
204
+ self.lm_head = self.lm_head.to(torch.device('cpu'))
205
+
206
+ def topk_mask(self, logits):
207
+ # logits.shape: (batch_size, seq_len, vocab_size)
208
+ topk_values, topk_indices = torch.topk(logits, self.config.ADA_TOPK, dim=-1)
209
+ # topk_values.shape, topk_indices.shape: (batch_size, seq_len, topK)
210
+ mask = torch.zeros_like(logits) # (batch_size, seq_len, vocab_size)
211
+ # Only in top-k positions, put 1 to the corresponding position
212
+ mask.scatter_(dim=-1, index=topk_indices, src=torch.ones_like(mask))
213
+ return mask
214
+
215
+ def pred_with_sliced_lm_head_simple(self, ada_logits, hidden_states):
216
+ # nll_loss = None
217
+ # Limit activated tokens to ADA_TOPK during inference
218
+ # ada_logits_mask = self.topk_mask(ada_logits) # (batch_size, seq_len, vocab_size)
219
+ ada_logits, topk_indices = torch.topk(ada_logits, self.config.ADA_TOPK, dim=-1) # ada_logits: # (batch_size, seq_len, vocab_size) = # (batch_size, 1, vocab_size)
220
+
221
+ # ada_logits = ada_logits * ada_logits_mask # (batch_size, seq_len, vocab_size)
222
+ # ada_logits = topk_values
223
+
224
+ # batch_size, seq_len, vocab_size = ada_logits.size()
225
+ gt_zero_pos = torch.nonzero(ada_logits[:, -1, :] > 0, as_tuple=True)[-1].shape[0]
226
+ ada_index_slice = topk_indices[:, :, :gt_zero_pos].flatten().to(self.lm_head.weight.device) # equivalent to `sigmoid(ada_logits) > 0.5`
227
+ # union_ada_index_slice = torch.unique(ada_index_slice).to(self.lm_head.weight.device) # torch_size([union_size])
228
+ sliced_lm_head_weight = self.lm_head.weight[ada_index_slice, :].contiguous().to(hidden_states.device) # torch.Size([union_size, hidden_size])
229
+ lm_logits_sliced = hidden_states @ sliced_lm_head_weight.T # (batch_size, seq_len, union_size)
230
+
231
+ return lm_logits_sliced, ada_index_slice
232
+
233
+ def forward(
234
+ self,
235
+ input_ids: torch.LongTensor = None,
236
+ attention_mask: Optional[torch.Tensor] = None,
237
+ position_ids: Optional[torch.LongTensor] = None,
238
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
239
+ inputs_embeds: Optional[torch.FloatTensor] = None,
240
+ labels: Optional[torch.LongTensor] = None,
241
+ use_cache: Optional[bool] = None,
242
+ output_attentions: Optional[bool] = None,
243
+ output_hidden_states: Optional[bool] = None,
244
+ return_dict: Optional[bool] = None,
245
+ cache_position: Optional[torch.LongTensor] = None, # TODO: check the effect of this new variable
246
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
247
+ # TODO: How does forward know whether is training or inference?
248
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
249
+ output_hidden_states = (
250
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
251
+ )
252
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
253
+
254
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
255
+ outputs = self.model(
256
+ input_ids=input_ids,
257
+ attention_mask=attention_mask,
258
+ position_ids=position_ids,
259
+ past_key_values=past_key_values,
260
+ inputs_embeds=inputs_embeds,
261
+ use_cache=use_cache,
262
+ output_attentions=output_attentions,
263
+ output_hidden_states=output_hidden_states,
264
+ return_dict=return_dict,
265
+ )
266
+
267
+ hidden_states = outputs[0] # hidden_states.shape: (batch_size, seq_len, hidden_size)
268
+ batch_size, seq_len, _ = hidden_states.size()
269
+ vocab_size = self.lm_head.weight.shape[0]
270
+
271
+ # This activation could be very large during training if vocab_size is large,
272
+ # but in inference, storing activation is not needed
273
+
274
+ # TINGYUAN
275
+ self.adavocab_head.A.to(hidden_states.device)
276
+ self.adavocab_head.B.to(hidden_states.device)
277
+ ada_logits = self.adavocab_head(hidden_states[:, -1:, :]) # (batch_size, seq_len, vocab_size)
278
+ # ada_logits = ada_logits.float()
279
+ self.adavocab_head.A.to("cpu")
280
+ self.adavocab_head.B.to("cpu")
281
+
282
+ lm_head_logits = None
283
+ lm_loss, mask_loss, topk_loss = None, None, None
284
+ loss = None
285
+
286
+ if labels is not None: # For prediction_step, training_step. Not for generation
287
+ # ------ Only for Training and Eval Loop------
288
+ # During Inference, we don't need self.lm_head in GPU memory
289
+ lm_head_logits = self.lm_head(hidden_states) # (batch_size, seq_len, vocab_size)
290
+ lm_head_logits = lm_head_logits.float()
291
+ # -------------------------------
292
+ # Supervised Signal of `self.adavocab_head` from two sources:
293
+ # 1. (Primary) BCEWithLogitsLoss between ada_logits and topk_gt_mask (distillation signal)
294
+ # 2. CrossEntropyLoss between ada_logits and labels with constraint (from ground truth labels)
295
+
296
+ if self.training: # training_step
297
+ # Loss from the second source
298
+ # Shift so that tokens < n predict n
299
+ shift_logits = ada_logits[..., :-1, :].contiguous() # (batch_size, seq_len - 1, vocab_size)
300
+ shift_labels = labels[..., 1:].contiguous() # (batch_size, seq_len - 1)
301
+
302
+ # Flatten the tokens
303
+ loss_fct = CrossEntropyLoss() # CE loss includes the softmax function
304
+ shift_logits = shift_logits.view(-1, self.config.vocab_size) # (batch_size * (seq_len - 1), vocab_size)
305
+
306
+ shift_labels = shift_labels.view(-1) # (batch_size * seq_len)
307
+ shift_labels = shift_labels.to(shift_logits.device)
308
+
309
+ lm_loss = loss_fct(shift_logits, shift_labels)
310
+ else: # prediction_step
311
+ _, lm_loss = self.pred_with_sliced_lm_head(ada_logits, hidden_states, input_ids, labels, min_logit=-100)
312
+
313
+ # Loss from the first source
314
+ ada_logits_flat = ada_logits.view(-1, self.config.vocab_size) # (batch_size * seq_len, vocab_size)
315
+ ada_probs = torch.sigmoid(ada_logits_flat) # (batch_size * seq_len, vocab_size)
316
+
317
+ topk_gt_mask = self.topk_mask(lm_head_logits) # (batch_size, seq_len, vocab_size)
318
+ # TODO: Add weights from lm_head_logits
319
+ topk_gt_mask = topk_gt_mask.view(-1, self.config.vocab_size) # (batch_size * seq_len, vocab_size)
320
+
321
+ mask_loss_fct = BCEWithLogitsLoss() # BCE Loss including the sigmoid function
322
+ mask_loss = mask_loss_fct(ada_logits_flat, topk_gt_mask)
323
+
324
+ ada_ones = ada_probs.sum() # scalar
325
+ # TODO: Handle pad token in no-packing case
326
+ target_ones = batch_size * seq_len * self.config.ADA_TOPK # scalar
327
+ target_ones = torch.tensor(target_ones, dtype=torch.float32).to(ada_ones.device)
328
+ # We need to normalize this loss, make it agnostic to batch size, seq_len, topK
329
+ topk_loss = F.l1_loss(ada_ones, target_ones) / target_ones
330
+
331
+ loss = self.config.ADA_LOSS_WEIGHT * lm_loss + self.config.ADA_MASK_WEIGHT * mask_loss + self.config.ADA_TOPK_WEIGHT * topk_loss
332
+ else: # For generation
333
+ with torch.no_grad():
334
+ ada_logits, lm_head_logits = self.pred_with_sliced_lm_head_simple(ada_logits, hidden_states[:, -1:, :])
335
+
336
+ if not return_dict:
337
+ output = (ada_logits,) + outputs[1:]
338
+ return (loss,) + output if loss is not None else output
339
+
340
+ return AdaCausalLMOutputWithPast(
341
+ loss=loss,
342
+ logits=ada_logits,
343
+ past_key_values=outputs.past_key_values,
344
+ hidden_states=outputs.hidden_states,
345
+ attentions=outputs.attentions,
346
+ # Added by AdaVocab
347
+ lm_head_logits=lm_head_logits if lm_head_logits is not None else None,
348
+ lm_loss=self.config.ADA_LOSS_WEIGHT * lm_loss if lm_loss is not None else None,
349
+ mask_loss=self.config.ADA_MASK_WEIGHT * mask_loss if mask_loss is not None else None,
350
+ topk_loss=self.config.ADA_TOPK_WEIGHT * topk_loss if topk_loss is not None else None,
351
+ )
352
+
353
+ def get_input_embeddings(self):
354
+ return self.model.embed_tokens
355
+
356
+ def set_input_embeddings(self, value):
357
+ self.model.embed_tokens = value
358
+
359
+ def get_output_embeddings(self):
360
+ return self.lm_head
361
+
362
+ def set_output_embeddings(self, new_embeddings):
363
+ self.lm_head = new_embeddings
364
+
365
+ # TODO: Add `get` and `set` methods for `adavocab_head`
366
+ return AdaVocabCausalLM
367
+
368
+ AdaVocabLlamaForCausalLM = create_AdaVocabCausalLM(LlamaForCausalLM)
369
+ AdaVocabGemmaforCausalLM = create_AdaVocabCausalLM(GemmaForCausalLM)
370
+ AdaVocabQwen2ForCausalLM = create_AdaVocabCausalLM(Qwen2ForCausalLM)
371
+
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "ADA_ACT": false,
3
+ "ADA_DIM": 1024,
4
+ "ADA_LOSS_WEIGHT": 1.0,
5
+ "ADA_MASK_WEIGHT": 10.0,
6
+ "ADA_SVD": false,
7
+ "ADA_TOPK": 1024,
8
+ "ADA_TOPK_WEIGHT": 0.1,
9
+ "_name_or_path": "experiment_ckpts/gemma-2b_SFT-2024-06-10-123619/checkpoint-11592",
10
+ "architectures": [
11
+ "AdaVocabGemmaforCausalLM"
12
+ ],
13
+ "auto_map": {
14
+ "AutoModelForCausalLM": "ada_vocab_factory.AdaVocabGemmaforCausalLM"
15
+ },
16
+ "attention_bias": false,
17
+ "attention_dropout": 0.0,
18
+ "bos_token_id": 2,
19
+ "eos_token_id": 1,
20
+ "head_dim": 256,
21
+ "hidden_act": "gelu",
22
+ "hidden_activation": "gelu_pytorch_tanh",
23
+ "hidden_size": 2048,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 16384,
26
+ "max_position_embeddings": 8192,
27
+ "model_type": "gemma",
28
+ "num_attention_heads": 8,
29
+ "num_hidden_layers": 18,
30
+ "num_key_value_heads": 1,
31
+ "pad_token_id": 0,
32
+ "rms_norm_eps": 1e-06,
33
+ "rope_scaling": null,
34
+ "rope_theta": 10000.0,
35
+ "torch_dtype": "bfloat16",
36
+ "transformers_version": "4.41.2",
37
+ "use_cache": true,
38
+ "vocab_size": 256000
39
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "eos_token_id": 1,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.41.2"
7
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28313e4f41d562d47d11611da72aaa3ae762fb7e7bbdf6ad7c1d2af388a5bbce
3
+ size 4945242264
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:452b7164c0df78eaf830eaee2576bae80a3f0b814189ec9fa97e0d356f2d0071
3
+ size 595604120
model.safetensors.index.json ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5540827136
4
+ },
5
+ "weight_map": {
6
+ "adavocab_head.A.weight": "model-00002-of-00002.safetensors",
7
+ "adavocab_head.B.weight": "model-00002-of-00002.safetensors",
8
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
19
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
29
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
31
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
38
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
41
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
43
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
50
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
53
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
55
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
62
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
65
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
67
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
74
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
77
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
79
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
86
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
89
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
91
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
92
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
95
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
98
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
101
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
103
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
110
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
113
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
115
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
122
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
125
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
127
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
134
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
137
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
139
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
141
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
142
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
145
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
146
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
149
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
151
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
158
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
161
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
163
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
165
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
166
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
167
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
168
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
169
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
170
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
171
+ "model.norm.weight": "model-00002-of-00002.safetensors"
172
+ }
173
+ }
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a46b58c89a755942de729304ebc2feb8bfb4a41abb255a43e7e5d80ef2d3df1
3
+ size 2113931680
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38c9fd84c2df1d33f1649abe5c62475a7c3f85ef4cdea02825c86259bec765ec
3
+ size 14512
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d92d6d4b7c1161fff992560777767ea822d9d44702426f8bfdfb93cf3411106e
3
+ size 14512
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56c31c1a8789d8835d62a0bd8cd3273d62f53e94d3ab833b7778b112574d7505
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<start_of_turn>",
4
+ "<end_of_turn>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<bos>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "<pad>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "unk_token": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7da53ca29fb16f6b2489482fc0bc6a394162cdab14d12764a1755ebc583fea79
3
+ size 17518525
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2
3
+ size 4241003
tokenizer_config.json ADDED
@@ -0,0 +1,1757 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<bos>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<mask>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ },
45
+ "5": {
46
+ "content": "<2mass>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": false
52
+ },
53
+ "6": {
54
+ "content": "[@BOS@]",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": false
60
+ },
61
+ "7": {
62
+ "content": "<unused0>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": false
68
+ },
69
+ "8": {
70
+ "content": "<unused1>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": false
76
+ },
77
+ "9": {
78
+ "content": "<unused2>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": false
84
+ },
85
+ "10": {
86
+ "content": "<unused3>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": false
92
+ },
93
+ "11": {
94
+ "content": "<unused4>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": false
100
+ },
101
+ "12": {
102
+ "content": "<unused5>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": false
108
+ },
109
+ "13": {
110
+ "content": "<unused6>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": false
116
+ },
117
+ "14": {
118
+ "content": "<unused7>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "15": {
126
+ "content": "<unused8>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "16": {
134
+ "content": "<unused9>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "17": {
142
+ "content": "<unused10>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "18": {
150
+ "content": "<unused11>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "19": {
158
+ "content": "<unused12>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "20": {
166
+ "content": "<unused13>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "21": {
174
+ "content": "<unused14>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "22": {
182
+ "content": "<unused15>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "23": {
190
+ "content": "<unused16>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "24": {
198
+ "content": "<unused17>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "25": {
206
+ "content": "<unused18>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "26": {
214
+ "content": "<unused19>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": false
220
+ },
221
+ "27": {
222
+ "content": "<unused20>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": false
228
+ },
229
+ "28": {
230
+ "content": "<unused21>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": false
236
+ },
237
+ "29": {
238
+ "content": "<unused22>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": false
244
+ },
245
+ "30": {
246
+ "content": "<unused23>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": false
252
+ },
253
+ "31": {
254
+ "content": "<unused24>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": false
260
+ },
261
+ "32": {
262
+ "content": "<unused25>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": false
268
+ },
269
+ "33": {
270
+ "content": "<unused26>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": false
276
+ },
277
+ "34": {
278
+ "content": "<unused27>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": false
284
+ },
285
+ "35": {
286
+ "content": "<unused28>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": false
292
+ },
293
+ "36": {
294
+ "content": "<unused29>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": false
300
+ },
301
+ "37": {
302
+ "content": "<unused30>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": false
308
+ },
309
+ "38": {
310
+ "content": "<unused31>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": false
316
+ },
317
+ "39": {
318
+ "content": "<unused32>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": false
324
+ },
325
+ "40": {
326
+ "content": "<unused33>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": false
332
+ },
333
+ "41": {
334
+ "content": "<unused34>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": false
340
+ },
341
+ "42": {
342
+ "content": "<unused35>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": false
348
+ },
349
+ "43": {
350
+ "content": "<unused36>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": false
356
+ },
357
+ "44": {
358
+ "content": "<unused37>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": false
364
+ },
365
+ "45": {
366
+ "content": "<unused38>",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": false
372
+ },
373
+ "46": {
374
+ "content": "<unused39>",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": false
380
+ },
381
+ "47": {
382
+ "content": "<unused40>",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": false
388
+ },
389
+ "48": {
390
+ "content": "<unused41>",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": false
396
+ },
397
+ "49": {
398
+ "content": "<unused42>",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": false
404
+ },
405
+ "50": {
406
+ "content": "<unused43>",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": false
412
+ },
413
+ "51": {
414
+ "content": "<unused44>",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": false
420
+ },
421
+ "52": {
422
+ "content": "<unused45>",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": false
428
+ },
429
+ "53": {
430
+ "content": "<unused46>",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": false
436
+ },
437
+ "54": {
438
+ "content": "<unused47>",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": false
444
+ },
445
+ "55": {
446
+ "content": "<unused48>",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": false
452
+ },
453
+ "56": {
454
+ "content": "<unused49>",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": false
460
+ },
461
+ "57": {
462
+ "content": "<unused50>",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": false
468
+ },
469
+ "58": {
470
+ "content": "<unused51>",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": false
476
+ },
477
+ "59": {
478
+ "content": "<unused52>",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": false
484
+ },
485
+ "60": {
486
+ "content": "<unused53>",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": false
492
+ },
493
+ "61": {
494
+ "content": "<unused54>",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": false
500
+ },
501
+ "62": {
502
+ "content": "<unused55>",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": false
508
+ },
509
+ "63": {
510
+ "content": "<unused56>",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": false
516
+ },
517
+ "64": {
518
+ "content": "<unused57>",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": false
524
+ },
525
+ "65": {
526
+ "content": "<unused58>",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": false
532
+ },
533
+ "66": {
534
+ "content": "<unused59>",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": false
540
+ },
541
+ "67": {
542
+ "content": "<unused60>",
543
+ "lstrip": false,
544
+ "normalized": false,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": false
548
+ },
549
+ "68": {
550
+ "content": "<unused61>",
551
+ "lstrip": false,
552
+ "normalized": false,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": false
556
+ },
557
+ "69": {
558
+ "content": "<unused62>",
559
+ "lstrip": false,
560
+ "normalized": false,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": false
564
+ },
565
+ "70": {
566
+ "content": "<unused63>",
567
+ "lstrip": false,
568
+ "normalized": false,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": false
572
+ },
573
+ "71": {
574
+ "content": "<unused64>",
575
+ "lstrip": false,
576
+ "normalized": false,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": false
580
+ },
581
+ "72": {
582
+ "content": "<unused65>",
583
+ "lstrip": false,
584
+ "normalized": false,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": false
588
+ },
589
+ "73": {
590
+ "content": "<unused66>",
591
+ "lstrip": false,
592
+ "normalized": false,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": false
596
+ },
597
+ "74": {
598
+ "content": "<unused67>",
599
+ "lstrip": false,
600
+ "normalized": false,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": false
604
+ },
605
+ "75": {
606
+ "content": "<unused68>",
607
+ "lstrip": false,
608
+ "normalized": false,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": false
612
+ },
613
+ "76": {
614
+ "content": "<unused69>",
615
+ "lstrip": false,
616
+ "normalized": false,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": false
620
+ },
621
+ "77": {
622
+ "content": "<unused70>",
623
+ "lstrip": false,
624
+ "normalized": false,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": false
628
+ },
629
+ "78": {
630
+ "content": "<unused71>",
631
+ "lstrip": false,
632
+ "normalized": false,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": false
636
+ },
637
+ "79": {
638
+ "content": "<unused72>",
639
+ "lstrip": false,
640
+ "normalized": false,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": false
644
+ },
645
+ "80": {
646
+ "content": "<unused73>",
647
+ "lstrip": false,
648
+ "normalized": false,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": false
652
+ },
653
+ "81": {
654
+ "content": "<unused74>",
655
+ "lstrip": false,
656
+ "normalized": false,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": false
660
+ },
661
+ "82": {
662
+ "content": "<unused75>",
663
+ "lstrip": false,
664
+ "normalized": false,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": false
668
+ },
669
+ "83": {
670
+ "content": "<unused76>",
671
+ "lstrip": false,
672
+ "normalized": false,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": false
676
+ },
677
+ "84": {
678
+ "content": "<unused77>",
679
+ "lstrip": false,
680
+ "normalized": false,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": false
684
+ },
685
+ "85": {
686
+ "content": "<unused78>",
687
+ "lstrip": false,
688
+ "normalized": false,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": false
692
+ },
693
+ "86": {
694
+ "content": "<unused79>",
695
+ "lstrip": false,
696
+ "normalized": false,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": false
700
+ },
701
+ "87": {
702
+ "content": "<unused80>",
703
+ "lstrip": false,
704
+ "normalized": false,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": false
708
+ },
709
+ "88": {
710
+ "content": "<unused81>",
711
+ "lstrip": false,
712
+ "normalized": false,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": false
716
+ },
717
+ "89": {
718
+ "content": "<unused82>",
719
+ "lstrip": false,
720
+ "normalized": false,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": false
724
+ },
725
+ "90": {
726
+ "content": "<unused83>",
727
+ "lstrip": false,
728
+ "normalized": false,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": false
732
+ },
733
+ "91": {
734
+ "content": "<unused84>",
735
+ "lstrip": false,
736
+ "normalized": false,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": false
740
+ },
741
+ "92": {
742
+ "content": "<unused85>",
743
+ "lstrip": false,
744
+ "normalized": false,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": false
748
+ },
749
+ "93": {
750
+ "content": "<unused86>",
751
+ "lstrip": false,
752
+ "normalized": false,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": false
756
+ },
757
+ "94": {
758
+ "content": "<unused87>",
759
+ "lstrip": false,
760
+ "normalized": false,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": false
764
+ },
765
+ "95": {
766
+ "content": "<unused88>",
767
+ "lstrip": false,
768
+ "normalized": false,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": false
772
+ },
773
+ "96": {
774
+ "content": "<unused89>",
775
+ "lstrip": false,
776
+ "normalized": false,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": false
780
+ },
781
+ "97": {
782
+ "content": "<unused90>",
783
+ "lstrip": false,
784
+ "normalized": false,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": false
788
+ },
789
+ "98": {
790
+ "content": "<unused91>",
791
+ "lstrip": false,
792
+ "normalized": false,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": false
796
+ },
797
+ "99": {
798
+ "content": "<unused92>",
799
+ "lstrip": false,
800
+ "normalized": false,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": false
804
+ },
805
+ "100": {
806
+ "content": "<unused93>",
807
+ "lstrip": false,
808
+ "normalized": false,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": false
812
+ },
813
+ "101": {
814
+ "content": "<unused94>",
815
+ "lstrip": false,
816
+ "normalized": false,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": false
820
+ },
821
+ "102": {
822
+ "content": "<unused95>",
823
+ "lstrip": false,
824
+ "normalized": false,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": false
828
+ },
829
+ "103": {
830
+ "content": "<unused96>",
831
+ "lstrip": false,
832
+ "normalized": false,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": false
836
+ },
837
+ "104": {
838
+ "content": "<unused97>",
839
+ "lstrip": false,
840
+ "normalized": false,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": false
844
+ },
845
+ "105": {
846
+ "content": "<unused98>",
847
+ "lstrip": false,
848
+ "normalized": false,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": false
852
+ },
853
+ "106": {
854
+ "content": "<start_of_turn>",
855
+ "lstrip": false,
856
+ "normalized": false,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": true
860
+ },
861
+ "107": {
862
+ "content": "<end_of_turn>",
863
+ "lstrip": false,
864
+ "normalized": false,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": true
868
+ },
869
+ "108": {
870
+ "content": "\n",
871
+ "lstrip": false,
872
+ "normalized": false,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": false
876
+ },
877
+ "109": {
878
+ "content": "\n\n",
879
+ "lstrip": false,
880
+ "normalized": false,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": false
884
+ },
885
+ "110": {
886
+ "content": "\n\n\n",
887
+ "lstrip": false,
888
+ "normalized": false,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": false
892
+ },
893
+ "111": {
894
+ "content": "\n\n\n\n",
895
+ "lstrip": false,
896
+ "normalized": false,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": false
900
+ },
901
+ "112": {
902
+ "content": "\n\n\n\n\n",
903
+ "lstrip": false,
904
+ "normalized": false,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": false
908
+ },
909
+ "113": {
910
+ "content": "\n\n\n\n\n\n",
911
+ "lstrip": false,
912
+ "normalized": false,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": false
916
+ },
917
+ "114": {
918
+ "content": "\n\n\n\n\n\n\n",
919
+ "lstrip": false,
920
+ "normalized": false,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": false
924
+ },
925
+ "115": {
926
+ "content": "\n\n\n\n\n\n\n\n",
927
+ "lstrip": false,
928
+ "normalized": false,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": false
932
+ },
933
+ "116": {
934
+ "content": "\n\n\n\n\n\n\n\n\n",
935
+ "lstrip": false,
936
+ "normalized": false,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": false
940
+ },
941
+ "117": {
942
+ "content": "\n\n\n\n\n\n\n\n\n\n",
943
+ "lstrip": false,
944
+ "normalized": false,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": false
948
+ },
949
+ "118": {
950
+ "content": "\n\n\n\n\n\n\n\n\n\n\n",
951
+ "lstrip": false,
952
+ "normalized": false,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": false
956
+ },
957
+ "119": {
958
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n",
959
+ "lstrip": false,
960
+ "normalized": false,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": false
964
+ },
965
+ "120": {
966
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
967
+ "lstrip": false,
968
+ "normalized": false,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": false
972
+ },
973
+ "121": {
974
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
975
+ "lstrip": false,
976
+ "normalized": false,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": false
980
+ },
981
+ "122": {
982
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
983
+ "lstrip": false,
984
+ "normalized": false,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": false
988
+ },
989
+ "123": {
990
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
991
+ "lstrip": false,
992
+ "normalized": false,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": false
996
+ },
997
+ "124": {
998
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
999
+ "lstrip": false,
1000
+ "normalized": false,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": false
1004
+ },
1005
+ "125": {
1006
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1007
+ "lstrip": false,
1008
+ "normalized": false,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": false
1012
+ },
1013
+ "126": {
1014
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1015
+ "lstrip": false,
1016
+ "normalized": false,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": false
1020
+ },
1021
+ "127": {
1022
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": false
1028
+ },
1029
+ "128": {
1030
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1031
+ "lstrip": false,
1032
+ "normalized": false,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": false
1036
+ },
1037
+ "129": {
1038
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1039
+ "lstrip": false,
1040
+ "normalized": false,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": false
1044
+ },
1045
+ "130": {
1046
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1047
+ "lstrip": false,
1048
+ "normalized": false,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": false
1052
+ },
1053
+ "131": {
1054
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1055
+ "lstrip": false,
1056
+ "normalized": false,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": false
1060
+ },
1061
+ "132": {
1062
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1063
+ "lstrip": false,
1064
+ "normalized": false,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": false
1068
+ },
1069
+ "133": {
1070
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1071
+ "lstrip": false,
1072
+ "normalized": false,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": false
1076
+ },
1077
+ "134": {
1078
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1079
+ "lstrip": false,
1080
+ "normalized": false,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": false
1084
+ },
1085
+ "135": {
1086
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1087
+ "lstrip": false,
1088
+ "normalized": false,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": false
1092
+ },
1093
+ "136": {
1094
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1095
+ "lstrip": false,
1096
+ "normalized": false,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": false
1100
+ },
1101
+ "137": {
1102
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1103
+ "lstrip": false,
1104
+ "normalized": false,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": false
1108
+ },
1109
+ "138": {
1110
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1111
+ "lstrip": false,
1112
+ "normalized": false,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": false
1116
+ },
1117
+ "139": {
1118
+ "content": "▁▁",
1119
+ "lstrip": false,
1120
+ "normalized": false,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": false
1124
+ },
1125
+ "140": {
1126
+ "content": "▁▁▁",
1127
+ "lstrip": false,
1128
+ "normalized": false,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": false
1132
+ },
1133
+ "141": {
1134
+ "content": "▁▁▁▁",
1135
+ "lstrip": false,
1136
+ "normalized": false,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": false
1140
+ },
1141
+ "142": {
1142
+ "content": "▁▁▁▁▁",
1143
+ "lstrip": false,
1144
+ "normalized": false,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": false
1148
+ },
1149
+ "143": {
1150
+ "content": "▁▁▁▁▁▁",
1151
+ "lstrip": false,
1152
+ "normalized": false,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": false
1156
+ },
1157
+ "144": {
1158
+ "content": "▁▁▁▁▁▁▁",
1159
+ "lstrip": false,
1160
+ "normalized": false,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": false
1164
+ },
1165
+ "145": {
1166
+ "content": "▁▁▁▁▁▁▁▁",
1167
+ "lstrip": false,
1168
+ "normalized": false,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": false
1172
+ },
1173
+ "146": {
1174
+ "content": "▁▁▁▁▁▁▁▁▁",
1175
+ "lstrip": false,
1176
+ "normalized": false,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": false
1180
+ },
1181
+ "147": {
1182
+ "content": "▁▁▁▁▁▁▁▁▁▁",
1183
+ "lstrip": false,
1184
+ "normalized": false,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": false
1188
+ },
1189
+ "148": {
1190
+ "content": "▁▁▁▁▁▁▁▁▁▁▁",
1191
+ "lstrip": false,
1192
+ "normalized": false,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": false
1196
+ },
1197
+ "149": {
1198
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁",
1199
+ "lstrip": false,
1200
+ "normalized": false,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": false
1204
+ },
1205
+ "150": {
1206
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
1207
+ "lstrip": false,
1208
+ "normalized": false,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": false
1212
+ },
1213
+ "151": {
1214
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1215
+ "lstrip": false,
1216
+ "normalized": false,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": false
1220
+ },
1221
+ "152": {
1222
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1223
+ "lstrip": false,
1224
+ "normalized": false,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": false
1228
+ },
1229
+ "153": {
1230
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1231
+ "lstrip": false,
1232
+ "normalized": false,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": false
1236
+ },
1237
+ "154": {
1238
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1239
+ "lstrip": false,
1240
+ "normalized": false,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": false
1244
+ },
1245
+ "155": {
1246
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1247
+ "lstrip": false,
1248
+ "normalized": false,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": false
1252
+ },
1253
+ "156": {
1254
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1255
+ "lstrip": false,
1256
+ "normalized": false,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": false
1260
+ },
1261
+ "157": {
1262
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1263
+ "lstrip": false,
1264
+ "normalized": false,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": false
1268
+ },
1269
+ "158": {
1270
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1271
+ "lstrip": false,
1272
+ "normalized": false,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": false
1276
+ },
1277
+ "159": {
1278
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1279
+ "lstrip": false,
1280
+ "normalized": false,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": false
1284
+ },
1285
+ "160": {
1286
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1287
+ "lstrip": false,
1288
+ "normalized": false,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": false
1292
+ },
1293
+ "161": {
1294
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1295
+ "lstrip": false,
1296
+ "normalized": false,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": false
1300
+ },
1301
+ "162": {
1302
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1303
+ "lstrip": false,
1304
+ "normalized": false,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": false
1308
+ },
1309
+ "163": {
1310
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1311
+ "lstrip": false,
1312
+ "normalized": false,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": false
1316
+ },
1317
+ "164": {
1318
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1319
+ "lstrip": false,
1320
+ "normalized": false,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": false
1324
+ },
1325
+ "165": {
1326
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1327
+ "lstrip": false,
1328
+ "normalized": false,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": false
1332
+ },
1333
+ "166": {
1334
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1335
+ "lstrip": false,
1336
+ "normalized": false,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": false
1340
+ },
1341
+ "167": {
1342
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1343
+ "lstrip": false,
1344
+ "normalized": false,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": false
1348
+ },
1349
+ "168": {
1350
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1351
+ "lstrip": false,
1352
+ "normalized": false,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": false
1356
+ },
1357
+ "169": {
1358
+ "content": "<table>",
1359
+ "lstrip": false,
1360
+ "normalized": false,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": false
1364
+ },
1365
+ "170": {
1366
+ "content": "<caption>",
1367
+ "lstrip": false,
1368
+ "normalized": false,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": false
1372
+ },
1373
+ "171": {
1374
+ "content": "<thead>",
1375
+ "lstrip": false,
1376
+ "normalized": false,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": false
1380
+ },
1381
+ "172": {
1382
+ "content": "<tbody>",
1383
+ "lstrip": false,
1384
+ "normalized": false,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": false
1388
+ },
1389
+ "173": {
1390
+ "content": "<tfoot>",
1391
+ "lstrip": false,
1392
+ "normalized": false,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": false
1396
+ },
1397
+ "174": {
1398
+ "content": "<tr>",
1399
+ "lstrip": false,
1400
+ "normalized": false,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": false
1404
+ },
1405
+ "175": {
1406
+ "content": "<th>",
1407
+ "lstrip": false,
1408
+ "normalized": false,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": false
1412
+ },
1413
+ "176": {
1414
+ "content": "<td>",
1415
+ "lstrip": false,
1416
+ "normalized": false,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": false
1420
+ },
1421
+ "177": {
1422
+ "content": "</table>",
1423
+ "lstrip": false,
1424
+ "normalized": false,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": false
1428
+ },
1429
+ "178": {
1430
+ "content": "</caption>",
1431
+ "lstrip": false,
1432
+ "normalized": false,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": false
1436
+ },
1437
+ "179": {
1438
+ "content": "</thead>",
1439
+ "lstrip": false,
1440
+ "normalized": false,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": false
1444
+ },
1445
+ "180": {
1446
+ "content": "</tbody>",
1447
+ "lstrip": false,
1448
+ "normalized": false,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": false
1452
+ },
1453
+ "181": {
1454
+ "content": "</tfoot>",
1455
+ "lstrip": false,
1456
+ "normalized": false,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": false
1460
+ },
1461
+ "182": {
1462
+ "content": "</tr>",
1463
+ "lstrip": false,
1464
+ "normalized": false,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": false
1468
+ },
1469
+ "183": {
1470
+ "content": "</th>",
1471
+ "lstrip": false,
1472
+ "normalized": false,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": false
1476
+ },
1477
+ "184": {
1478
+ "content": "</td>",
1479
+ "lstrip": false,
1480
+ "normalized": false,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": false
1484
+ },
1485
+ "185": {
1486
+ "content": "<h1>",
1487
+ "lstrip": false,
1488
+ "normalized": false,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": false
1492
+ },
1493
+ "186": {
1494
+ "content": "<h2>",
1495
+ "lstrip": false,
1496
+ "normalized": false,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": false
1500
+ },
1501
+ "187": {
1502
+ "content": "<h3>",
1503
+ "lstrip": false,
1504
+ "normalized": false,
1505
+ "rstrip": false,
1506
+ "single_word": false,
1507
+ "special": false
1508
+ },
1509
+ "188": {
1510
+ "content": "<h4>",
1511
+ "lstrip": false,
1512
+ "normalized": false,
1513
+ "rstrip": false,
1514
+ "single_word": false,
1515
+ "special": false
1516
+ },
1517
+ "189": {
1518
+ "content": "<h5>",
1519
+ "lstrip": false,
1520
+ "normalized": false,
1521
+ "rstrip": false,
1522
+ "single_word": false,
1523
+ "special": false
1524
+ },
1525
+ "190": {
1526
+ "content": "<h6>",
1527
+ "lstrip": false,
1528
+ "normalized": false,
1529
+ "rstrip": false,
1530
+ "single_word": false,
1531
+ "special": false
1532
+ },
1533
+ "191": {
1534
+ "content": "<blockquote>",
1535
+ "lstrip": false,
1536
+ "normalized": false,
1537
+ "rstrip": false,
1538
+ "single_word": false,
1539
+ "special": false
1540
+ },
1541
+ "192": {
1542
+ "content": "</h1>",
1543
+ "lstrip": false,
1544
+ "normalized": false,
1545
+ "rstrip": false,
1546
+ "single_word": false,
1547
+ "special": false
1548
+ },
1549
+ "193": {
1550
+ "content": "</h2>",
1551
+ "lstrip": false,
1552
+ "normalized": false,
1553
+ "rstrip": false,
1554
+ "single_word": false,
1555
+ "special": false
1556
+ },
1557
+ "194": {
1558
+ "content": "</h3>",
1559
+ "lstrip": false,
1560
+ "normalized": false,
1561
+ "rstrip": false,
1562
+ "single_word": false,
1563
+ "special": false
1564
+ },
1565
+ "195": {
1566
+ "content": "</h4>",
1567
+ "lstrip": false,
1568
+ "normalized": false,
1569
+ "rstrip": false,
1570
+ "single_word": false,
1571
+ "special": false
1572
+ },
1573
+ "196": {
1574
+ "content": "</h5>",
1575
+ "lstrip": false,
1576
+ "normalized": false,
1577
+ "rstrip": false,
1578
+ "single_word": false,
1579
+ "special": false
1580
+ },
1581
+ "197": {
1582
+ "content": "</h6>",
1583
+ "lstrip": false,
1584
+ "normalized": false,
1585
+ "rstrip": false,
1586
+ "single_word": false,
1587
+ "special": false
1588
+ },
1589
+ "198": {
1590
+ "content": "</blockquote>",
1591
+ "lstrip": false,
1592
+ "normalized": false,
1593
+ "rstrip": false,
1594
+ "single_word": false,
1595
+ "special": false
1596
+ },
1597
+ "199": {
1598
+ "content": "<strong>",
1599
+ "lstrip": false,
1600
+ "normalized": false,
1601
+ "rstrip": false,
1602
+ "single_word": false,
1603
+ "special": false
1604
+ },
1605
+ "200": {
1606
+ "content": "<em>",
1607
+ "lstrip": false,
1608
+ "normalized": false,
1609
+ "rstrip": false,
1610
+ "single_word": false,
1611
+ "special": false
1612
+ },
1613
+ "201": {
1614
+ "content": "<b>",
1615
+ "lstrip": false,
1616
+ "normalized": false,
1617
+ "rstrip": false,
1618
+ "single_word": false,
1619
+ "special": false
1620
+ },
1621
+ "202": {
1622
+ "content": "<i>",
1623
+ "lstrip": false,
1624
+ "normalized": false,
1625
+ "rstrip": false,
1626
+ "single_word": false,
1627
+ "special": false
1628
+ },
1629
+ "203": {
1630
+ "content": "<u>",
1631
+ "lstrip": false,
1632
+ "normalized": false,
1633
+ "rstrip": false,
1634
+ "single_word": false,
1635
+ "special": false
1636
+ },
1637
+ "204": {
1638
+ "content": "<s>",
1639
+ "lstrip": false,
1640
+ "normalized": false,
1641
+ "rstrip": false,
1642
+ "single_word": false,
1643
+ "special": false
1644
+ },
1645
+ "205": {
1646
+ "content": "<sub>",
1647
+ "lstrip": false,
1648
+ "normalized": false,
1649
+ "rstrip": false,
1650
+ "single_word": false,
1651
+ "special": false
1652
+ },
1653
+ "206": {
1654
+ "content": "<sup>",
1655
+ "lstrip": false,
1656
+ "normalized": false,
1657
+ "rstrip": false,
1658
+ "single_word": false,
1659
+ "special": false
1660
+ },
1661
+ "207": {
1662
+ "content": "<code>",
1663
+ "lstrip": false,
1664
+ "normalized": false,
1665
+ "rstrip": false,
1666
+ "single_word": false,
1667
+ "special": false
1668
+ },
1669
+ "208": {
1670
+ "content": "</strong>",
1671
+ "lstrip": false,
1672
+ "normalized": false,
1673
+ "rstrip": false,
1674
+ "single_word": false,
1675
+ "special": false
1676
+ },
1677
+ "209": {
1678
+ "content": "</em>",
1679
+ "lstrip": false,
1680
+ "normalized": false,
1681
+ "rstrip": false,
1682
+ "single_word": false,
1683
+ "special": false
1684
+ },
1685
+ "210": {
1686
+ "content": "</b>",
1687
+ "lstrip": false,
1688
+ "normalized": false,
1689
+ "rstrip": false,
1690
+ "single_word": false,
1691
+ "special": false
1692
+ },
1693
+ "211": {
1694
+ "content": "</i>",
1695
+ "lstrip": false,
1696
+ "normalized": false,
1697
+ "rstrip": false,
1698
+ "single_word": false,
1699
+ "special": false
1700
+ },
1701
+ "212": {
1702
+ "content": "</u>",
1703
+ "lstrip": false,
1704
+ "normalized": false,
1705
+ "rstrip": false,
1706
+ "single_word": false,
1707
+ "special": false
1708
+ },
1709
+ "213": {
1710
+ "content": "</s>",
1711
+ "lstrip": false,
1712
+ "normalized": false,
1713
+ "rstrip": false,
1714
+ "single_word": false,
1715
+ "special": false
1716
+ },
1717
+ "214": {
1718
+ "content": "</sub>",
1719
+ "lstrip": false,
1720
+ "normalized": false,
1721
+ "rstrip": false,
1722
+ "single_word": false,
1723
+ "special": false
1724
+ },
1725
+ "215": {
1726
+ "content": "</sup>",
1727
+ "lstrip": false,
1728
+ "normalized": false,
1729
+ "rstrip": false,
1730
+ "single_word": false,
1731
+ "special": false
1732
+ },
1733
+ "216": {
1734
+ "content": "</code>",
1735
+ "lstrip": false,
1736
+ "normalized": false,
1737
+ "rstrip": false,
1738
+ "single_word": false,
1739
+ "special": false
1740
+ }
1741
+ },
1742
+ "additional_special_tokens": [
1743
+ "<start_of_turn>",
1744
+ "<end_of_turn>"
1745
+ ],
1746
+ "bos_token": "<bos>",
1747
+ "chat_template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ raise_exception('System role not supported') }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}",
1748
+ "clean_up_tokenization_spaces": false,
1749
+ "eos_token": "<eos>",
1750
+ "model_max_length": 1000000000000000019884624838656,
1751
+ "pad_token": "<pad>",
1752
+ "sp_model_kwargs": {},
1753
+ "spaces_between_special_tokens": false,
1754
+ "tokenizer_class": "GemmaTokenizer",
1755
+ "unk_token": "<unk>",
1756
+ "use_default_system_prompt": false
1757
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13522b592f23109511d88b95e6d6206df14b800e4f018049ec7f900b735f9d03
3
+ size 5176