File size: 9,479 Bytes
d06c362 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
---
datasets:
- relbert/semeval2012_relational_similarity
model-index:
- name: relbert/relbert-albert-base-nce-a-semeval2012
results:
- task:
name: Relation Mapping
type: sorting-task
dataset:
name: Relation Mapping
args: relbert/relation_mapping
type: relation-mapping
metrics:
- name: Accuracy
type: accuracy
value: 0.7952777777777778
- task:
name: Analogy Questions (SAT full)
type: multiple-choice-qa
dataset:
name: SAT full
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.4037433155080214
- task:
name: Analogy Questions (SAT)
type: multiple-choice-qa
dataset:
name: SAT
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.39762611275964393
- task:
name: Analogy Questions (BATS)
type: multiple-choice-qa
dataset:
name: BATS
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.5919955530850473
- task:
name: Analogy Questions (Google)
type: multiple-choice-qa
dataset:
name: Google
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.564
- task:
name: Analogy Questions (U2)
type: multiple-choice-qa
dataset:
name: U2
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.35526315789473684
- task:
name: Analogy Questions (U4)
type: multiple-choice-qa
dataset:
name: U4
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.38657407407407407
- task:
name: Analogy Questions (ConceptNet Analogy)
type: multiple-choice-qa
dataset:
name: ConceptNet Analogy
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.25671140939597314
- task:
name: Analogy Questions (TREX Analogy)
type: multiple-choice-qa
dataset:
name: TREX Analogy
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.32786885245901637
- task:
name: Analogy Questions (NELL-ONE Analogy)
type: multiple-choice-qa
dataset:
name: NELL-ONE Analogy
args: relbert/analogy_questions
type: analogy-questions
metrics:
- name: Accuracy
type: accuracy
value: 0.4766666666666667
- task:
name: Lexical Relation Classification (BLESS)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.880066295012807
- name: F1 (macro)
type: f1_macro
value: 0.8753757463611488
- task:
name: Lexical Relation Classification (CogALexV)
type: classification
dataset:
name: CogALexV
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.7826291079812207
- name: F1 (macro)
type: f1_macro
value: 0.5287375767546086
- task:
name: Lexical Relation Classification (EVALution)
type: classification
dataset:
name: BLESS
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.5812567713976164
- name: F1 (macro)
type: f1_macro
value: 0.5671693927108489
- task:
name: Lexical Relation Classification (K&H+N)
type: classification
dataset:
name: K&H+N
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.9288446824789595
- name: F1 (macro)
type: f1_macro
value: 0.8200653410286133
- task:
name: Lexical Relation Classification (ROOT09)
type: classification
dataset:
name: ROOT09
args: relbert/lexical_relation_classification
type: relation-classification
metrics:
- name: F1
type: f1
value: 0.8558445628329677
- name: F1 (macro)
type: f1_macro
value: 0.8539588731534683
---
# relbert/relbert-albert-base-nce-a-semeval2012
RelBERT based on [albert-base-v2](https://huggingface.co/albert-base-v2) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning).
This model achieves the following results on the relation understanding tasks:
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-albert-base-nce-a-semeval2012/raw/main/analogy.forward.json)):
- Accuracy on SAT (full): 0.4037433155080214
- Accuracy on SAT: 0.39762611275964393
- Accuracy on BATS: 0.5919955530850473
- Accuracy on U2: 0.35526315789473684
- Accuracy on U4: 0.38657407407407407
- Accuracy on Google: 0.564
- Accuracy on ConceptNet Analogy: 0.25671140939597314
- Accuracy on T-Rex Analogy: 0.32786885245901637
- Accuracy on NELL-ONE Analogy: 0.4766666666666667
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-albert-base-nce-a-semeval2012/raw/main/classification.json)):
- Micro F1 score on BLESS: 0.880066295012807
- Micro F1 score on CogALexV: 0.7826291079812207
- Micro F1 score on EVALution: 0.5812567713976164
- Micro F1 score on K&H+N: 0.9288446824789595
- Micro F1 score on ROOT09: 0.8558445628329677
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-albert-base-nce-a-semeval2012/raw/main/relation_mapping.json)):
- Accuracy on Relation Mapping: 0.7952777777777778
### Usage
This model can be used through the [relbert library](https://github.com/asahi417/relbert). Install the library via pip
```shell
pip install relbert
```
and activate model as below.
```python
from relbert import RelBERT
model = RelBERT("relbert/relbert-albert-base-nce-a-semeval2012")
vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (n_dim, )
```
### Training hyperparameters
- model: albert-base-v2
- max_length: 64
- epoch: 10
- batch: 32
- random_seed: 0
- lr: 5e-06
- lr_warmup: 10
- aggregation_mode: average_no_mask
- data: relbert/semeval2012_relational_similarity
- data_name: None
- exclude_relation: None
- split: train
- split_valid: validation
- loss_function: nce
- classification_loss: False
- loss_function_config: {'temperature': 0.05, 'num_negative': 400, 'num_positive': 10}
- augment_negative_by_positive: True
See the full configuration at [config file](https://huggingface.co/relbert/relbert-albert-base-nce-a-semeval2012/raw/main/finetuning_config.json).
### Reference
If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.emnlp-main.712/).
```
@inproceedings{ushio-etal-2021-distilling,
title = "Distilling Relation Embeddings from Pretrained Language Models",
author = "Ushio, Asahi and
Camacho-Collados, Jose and
Schockaert, Steven",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-main.712",
doi = "10.18653/v1/2021.emnlp-main.712",
pages = "9044--9062",
abstract = "Pre-trained language models have been found to capture a surprisingly rich amount of lexical knowledge, ranging from commonsense properties of everyday concepts to detailed factual knowledge about named entities. Among others, this makes it possible to distill high-quality word vectors from pre-trained language models. However, it is currently unclear to what extent it is possible to distill relation embeddings, i.e. vectors that characterize the relationship between two words. Such relation embeddings are appealing because they can, in principle, encode relational knowledge in a more fine-grained way than is possible with knowledge graphs. To obtain relation embeddings from a pre-trained language model, we encode word pairs using a (manually or automatically generated) prompt, and we fine-tune the language model such that relationally similar word pairs yield similar output vectors. We find that the resulting relation embeddings are highly competitive on analogy (unsupervised) and relation classification (supervised) benchmarks, even without any task-specific fine-tuning. Source code to reproduce our experimental results and the model checkpoints are available in the following repository: https://github.com/asahi417/relbert",
}
```
|