model update
Browse files- README.md +38 -38
- analogy.forward.json +1 -1
- classification.json +1 -1
- config.json +6 -6
- finetuning_config.json +3 -3
- pytorch_model.bin +2 -2
- relation_mapping.json +0 -0
- tokenizer.json +2 -4
- tokenizer_config.json +1 -1
README.md
CHANGED
@@ -14,7 +14,7 @@ model-index:
|
|
14 |
metrics:
|
15 |
- name: Accuracy
|
16 |
type: accuracy
|
17 |
-
value: 0.
|
18 |
- task:
|
19 |
name: Analogy Questions (SAT full)
|
20 |
type: multiple-choice-qa
|
@@ -25,7 +25,7 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
-
value: 0.
|
29 |
- task:
|
30 |
name: Analogy Questions (SAT)
|
31 |
type: multiple-choice-qa
|
@@ -36,7 +36,7 @@ model-index:
|
|
36 |
metrics:
|
37 |
- name: Accuracy
|
38 |
type: accuracy
|
39 |
-
value: 0.
|
40 |
- task:
|
41 |
name: Analogy Questions (BATS)
|
42 |
type: multiple-choice-qa
|
@@ -47,7 +47,7 @@ model-index:
|
|
47 |
metrics:
|
48 |
- name: Accuracy
|
49 |
type: accuracy
|
50 |
-
value: 0.
|
51 |
- task:
|
52 |
name: Analogy Questions (Google)
|
53 |
type: multiple-choice-qa
|
@@ -58,7 +58,7 @@ model-index:
|
|
58 |
metrics:
|
59 |
- name: Accuracy
|
60 |
type: accuracy
|
61 |
-
value: 0.
|
62 |
- task:
|
63 |
name: Analogy Questions (U2)
|
64 |
type: multiple-choice-qa
|
@@ -69,7 +69,7 @@ model-index:
|
|
69 |
metrics:
|
70 |
- name: Accuracy
|
71 |
type: accuracy
|
72 |
-
value: 0.
|
73 |
- task:
|
74 |
name: Analogy Questions (U4)
|
75 |
type: multiple-choice-qa
|
@@ -80,7 +80,7 @@ model-index:
|
|
80 |
metrics:
|
81 |
- name: Accuracy
|
82 |
type: accuracy
|
83 |
-
value: 0.
|
84 |
- task:
|
85 |
name: Analogy Questions (ConceptNet Analogy)
|
86 |
type: multiple-choice-qa
|
@@ -91,7 +91,7 @@ model-index:
|
|
91 |
metrics:
|
92 |
- name: Accuracy
|
93 |
type: accuracy
|
94 |
-
value: 0.
|
95 |
- task:
|
96 |
name: Analogy Questions (TREX Analogy)
|
97 |
type: multiple-choice-qa
|
@@ -102,7 +102,7 @@ model-index:
|
|
102 |
metrics:
|
103 |
- name: Accuracy
|
104 |
type: accuracy
|
105 |
-
value: 0.
|
106 |
- task:
|
107 |
name: Analogy Questions (NELL-ONE Analogy)
|
108 |
type: multiple-choice-qa
|
@@ -113,7 +113,7 @@ model-index:
|
|
113 |
metrics:
|
114 |
- name: Accuracy
|
115 |
type: accuracy
|
116 |
-
value: 0.
|
117 |
- task:
|
118 |
name: Lexical Relation Classification (BLESS)
|
119 |
type: classification
|
@@ -124,10 +124,10 @@ model-index:
|
|
124 |
metrics:
|
125 |
- name: F1
|
126 |
type: f1
|
127 |
-
value: 0.
|
128 |
- name: F1 (macro)
|
129 |
type: f1_macro
|
130 |
-
value: 0.
|
131 |
- task:
|
132 |
name: Lexical Relation Classification (CogALexV)
|
133 |
type: classification
|
@@ -138,10 +138,10 @@ model-index:
|
|
138 |
metrics:
|
139 |
- name: F1
|
140 |
type: f1
|
141 |
-
value: 0.
|
142 |
- name: F1 (macro)
|
143 |
type: f1_macro
|
144 |
-
value: 0.
|
145 |
- task:
|
146 |
name: Lexical Relation Classification (EVALution)
|
147 |
type: classification
|
@@ -152,10 +152,10 @@ model-index:
|
|
152 |
metrics:
|
153 |
- name: F1
|
154 |
type: f1
|
155 |
-
value: 0.
|
156 |
- name: F1 (macro)
|
157 |
type: f1_macro
|
158 |
-
value: 0.
|
159 |
- task:
|
160 |
name: Lexical Relation Classification (K&H+N)
|
161 |
type: classification
|
@@ -166,10 +166,10 @@ model-index:
|
|
166 |
metrics:
|
167 |
- name: F1
|
168 |
type: f1
|
169 |
-
value: 0.
|
170 |
- name: F1 (macro)
|
171 |
type: f1_macro
|
172 |
-
value: 0.
|
173 |
- task:
|
174 |
name: Lexical Relation Classification (ROOT09)
|
175 |
type: classification
|
@@ -180,34 +180,34 @@ model-index:
|
|
180 |
metrics:
|
181 |
- name: F1
|
182 |
type: f1
|
183 |
-
value: 0.
|
184 |
- name: F1 (macro)
|
185 |
type: f1_macro
|
186 |
-
value: 0.
|
187 |
|
188 |
---
|
189 |
# relbert/relbert-roberta-base-nce-semeval2012-2
|
190 |
|
191 |
-
RelBERT based on [roberta-
|
192 |
This model achieves the following results on the relation understanding tasks:
|
193 |
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-2/raw/main/analogy.forward.json)):
|
194 |
-
- Accuracy on SAT (full): 0.
|
195 |
-
- Accuracy on SAT: 0.
|
196 |
-
- Accuracy on BATS: 0.
|
197 |
-
- Accuracy on U2: 0.
|
198 |
-
- Accuracy on U4: 0.
|
199 |
-
- Accuracy on Google: 0.
|
200 |
-
- Accuracy on ConceptNet Analogy: 0.
|
201 |
-
- Accuracy on T-Rex Analogy: 0.
|
202 |
-
- Accuracy on NELL-ONE Analogy: 0.
|
203 |
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-2/raw/main/classification.json)):
|
204 |
-
- Micro F1 score on BLESS: 0.
|
205 |
-
- Micro F1 score on CogALexV: 0.
|
206 |
-
- Micro F1 score on EVALution: 0.
|
207 |
-
- Micro F1 score on K&H+N: 0.
|
208 |
-
- Micro F1 score on ROOT09: 0.
|
209 |
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-2/raw/main/relation_mapping.json)):
|
210 |
-
- Accuracy on Relation Mapping: 0.
|
211 |
|
212 |
|
213 |
### Usage
|
@@ -224,7 +224,7 @@ vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (n_dim, )
|
|
224 |
|
225 |
### Training hyperparameters
|
226 |
|
227 |
-
- model: roberta-
|
228 |
- max_length: 64
|
229 |
- epoch: 10
|
230 |
- batch: 32
|
@@ -239,7 +239,7 @@ vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (n_dim, )
|
|
239 |
- split_valid: validation
|
240 |
- loss_function: nce
|
241 |
- classification_loss: False
|
242 |
-
- loss_function_config: {'temperature': 0.05, 'num_negative':
|
243 |
- augment_negative_by_positive: True
|
244 |
|
245 |
See the full configuration at [config file](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-2/raw/main/finetuning_config.json).
|
|
|
14 |
metrics:
|
15 |
- name: Accuracy
|
16 |
type: accuracy
|
17 |
+
value: 0.780436507936508
|
18 |
- task:
|
19 |
name: Analogy Questions (SAT full)
|
20 |
type: multiple-choice-qa
|
|
|
25 |
metrics:
|
26 |
- name: Accuracy
|
27 |
type: accuracy
|
28 |
+
value: 0.5588235294117647
|
29 |
- task:
|
30 |
name: Analogy Questions (SAT)
|
31 |
type: multiple-choice-qa
|
|
|
36 |
metrics:
|
37 |
- name: Accuracy
|
38 |
type: accuracy
|
39 |
+
value: 0.5608308605341247
|
40 |
- task:
|
41 |
name: Analogy Questions (BATS)
|
42 |
type: multiple-choice-qa
|
|
|
47 |
metrics:
|
48 |
- name: Accuracy
|
49 |
type: accuracy
|
50 |
+
value: 0.6731517509727627
|
51 |
- task:
|
52 |
name: Analogy Questions (Google)
|
53 |
type: multiple-choice-qa
|
|
|
58 |
metrics:
|
59 |
- name: Accuracy
|
60 |
type: accuracy
|
61 |
+
value: 0.856
|
62 |
- task:
|
63 |
name: Analogy Questions (U2)
|
64 |
type: multiple-choice-qa
|
|
|
69 |
metrics:
|
70 |
- name: Accuracy
|
71 |
type: accuracy
|
72 |
+
value: 0.5570175438596491
|
73 |
- task:
|
74 |
name: Analogy Questions (U4)
|
75 |
type: multiple-choice-qa
|
|
|
80 |
metrics:
|
81 |
- name: Accuracy
|
82 |
type: accuracy
|
83 |
+
value: 0.5439814814814815
|
84 |
- task:
|
85 |
name: Analogy Questions (ConceptNet Analogy)
|
86 |
type: multiple-choice-qa
|
|
|
91 |
metrics:
|
92 |
- name: Accuracy
|
93 |
type: accuracy
|
94 |
+
value: 0.30453020134228187
|
95 |
- task:
|
96 |
name: Analogy Questions (TREX Analogy)
|
97 |
type: multiple-choice-qa
|
|
|
102 |
metrics:
|
103 |
- name: Accuracy
|
104 |
type: accuracy
|
105 |
+
value: 0.4644808743169399
|
106 |
- task:
|
107 |
name: Analogy Questions (NELL-ONE Analogy)
|
108 |
type: multiple-choice-qa
|
|
|
113 |
metrics:
|
114 |
- name: Accuracy
|
115 |
type: accuracy
|
116 |
+
value: 0.635
|
117 |
- task:
|
118 |
name: Lexical Relation Classification (BLESS)
|
119 |
type: classification
|
|
|
124 |
metrics:
|
125 |
- name: F1
|
126 |
type: f1
|
127 |
+
value: 0.9067349706192557
|
128 |
- name: F1 (macro)
|
129 |
type: f1_macro
|
130 |
+
value: 0.901083105005463
|
131 |
- task:
|
132 |
name: Lexical Relation Classification (CogALexV)
|
133 |
type: classification
|
|
|
138 |
metrics:
|
139 |
- name: F1
|
140 |
type: f1
|
141 |
+
value: 0.8112676056338028
|
142 |
- name: F1 (macro)
|
143 |
type: f1_macro
|
144 |
+
value: 0.6148092103324919
|
145 |
- task:
|
146 |
name: Lexical Relation Classification (EVALution)
|
147 |
type: classification
|
|
|
152 |
metrics:
|
153 |
- name: F1
|
154 |
type: f1
|
155 |
+
value: 0.6305525460455038
|
156 |
- name: F1 (macro)
|
157 |
type: f1_macro
|
158 |
+
value: 0.6268772505825797
|
159 |
- task:
|
160 |
name: Lexical Relation Classification (K&H+N)
|
161 |
type: classification
|
|
|
166 |
metrics:
|
167 |
- name: F1
|
168 |
type: f1
|
169 |
+
value: 0.9433122348195033
|
170 |
- name: F1 (macro)
|
171 |
type: f1_macro
|
172 |
+
value: 0.8521358889073605
|
173 |
- task:
|
174 |
name: Lexical Relation Classification (ROOT09)
|
175 |
type: classification
|
|
|
180 |
metrics:
|
181 |
- name: F1
|
182 |
type: f1
|
183 |
+
value: 0.895017235976183
|
184 |
- name: F1 (macro)
|
185 |
type: f1_macro
|
186 |
+
value: 0.8915314929167794
|
187 |
|
188 |
---
|
189 |
# relbert/relbert-roberta-base-nce-semeval2012-2
|
190 |
|
191 |
+
RelBERT based on [roberta-base](https://huggingface.co/roberta-base) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning).
|
192 |
This model achieves the following results on the relation understanding tasks:
|
193 |
- Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-2/raw/main/analogy.forward.json)):
|
194 |
+
- Accuracy on SAT (full): 0.5588235294117647
|
195 |
+
- Accuracy on SAT: 0.5608308605341247
|
196 |
+
- Accuracy on BATS: 0.6731517509727627
|
197 |
+
- Accuracy on U2: 0.5570175438596491
|
198 |
+
- Accuracy on U4: 0.5439814814814815
|
199 |
+
- Accuracy on Google: 0.856
|
200 |
+
- Accuracy on ConceptNet Analogy: 0.30453020134228187
|
201 |
+
- Accuracy on T-Rex Analogy: 0.4644808743169399
|
202 |
+
- Accuracy on NELL-ONE Analogy: 0.635
|
203 |
- Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-2/raw/main/classification.json)):
|
204 |
+
- Micro F1 score on BLESS: 0.9067349706192557
|
205 |
+
- Micro F1 score on CogALexV: 0.8112676056338028
|
206 |
+
- Micro F1 score on EVALution: 0.6305525460455038
|
207 |
+
- Micro F1 score on K&H+N: 0.9433122348195033
|
208 |
+
- Micro F1 score on ROOT09: 0.895017235976183
|
209 |
- Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-2/raw/main/relation_mapping.json)):
|
210 |
+
- Accuracy on Relation Mapping: 0.780436507936508
|
211 |
|
212 |
|
213 |
### Usage
|
|
|
224 |
|
225 |
### Training hyperparameters
|
226 |
|
227 |
+
- model: roberta-base
|
228 |
- max_length: 64
|
229 |
- epoch: 10
|
230 |
- batch: 32
|
|
|
239 |
- split_valid: validation
|
240 |
- loss_function: nce
|
241 |
- classification_loss: False
|
242 |
+
- loss_function_config: {'temperature': 0.05, 'num_negative': 400, 'num_positive': 10}
|
243 |
- augment_negative_by_positive: True
|
244 |
|
245 |
See the full configuration at [config file](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-2/raw/main/finetuning_config.json).
|
analogy.forward.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"semeval2012_relational_similarity/validation": 0.
|
|
|
1 |
+
{"semeval2012_relational_similarity/validation": 0.6962025316455697, "scan/test": 0.2332920792079208, "sat_full/test": 0.5588235294117647, "sat/test": 0.5608308605341247, "u2/test": 0.5570175438596491, "u4/test": 0.5439814814814815, "google/test": 0.856, "bats/test": 0.6731517509727627, "t_rex_relational_similarity/test": 0.4644808743169399, "conceptnet_relational_similarity/test": 0.30453020134228187, "nell_relational_similarity/test": 0.635}
|
classification.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.
|
|
|
1 |
+
{"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9067349706192557, "test/f1_macro": 0.901083105005463, "test/f1_micro": 0.9067349706192557, "test/p_macro": 0.8997912343328448, "test/p_micro": 0.9067349706192557, "test/r_macro": 0.9030508070759272, "test/r_micro": 0.9067349706192557, "test/f1/attri": 0.9096005606166784, "test/p/attri": 0.8878248974008208, "test/r/attri": 0.9324712643678161, "test/f1/coord": 0.9407783417935703, "test/p/coord": 0.936026936026936, "test/r/coord": 0.9455782312925171, "test/f1/event": 0.8609341825902335, "test/p/event": 0.8729817007534983, "test/r/event": 0.8492146596858638, "test/f1/hyper": 0.9136163982430454, "test/p/hyper": 0.9369369369369369, "test/r/hyper": 0.8914285714285715, "test/f1/mero": 0.8599348534201954, "test/p/mero": 0.8365019011406845, "test/r/mero": 0.8847184986595175, "test/f1/random": 0.9216342933690557, "test/p/random": 0.9284750337381916, "test/r/random": 0.9148936170212766}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8112676056338028, "test/f1_macro": 0.6148092103324919, "test/f1_micro": 0.8112676056338028, "test/p_macro": 0.6304195397027895, "test/p_micro": 0.8112676056338028, "test/r_macro": 0.6012687546642258, "test/r_micro": 0.8112676056338028, "test/f1/ANT": 0.61731843575419, "test/p/ANT": 0.6207865168539326, "test/r/ANT": 0.6138888888888889, "test/f1/HYPER": 0.5638148667601683, "test/p/HYPER": 0.6072507552870091, "test/r/HYPER": 0.5261780104712042, "test/f1/PART_OF": 0.5849056603773586, "test/p/PART_OF": 0.62, "test/r/PART_OF": 0.5535714285714286, "test/f1/RANDOM": 0.9080070887707427, "test/p/RANDOM": 0.8951715374841169, "test/r/RANDOM": 0.9212160836874795, "test/f1/SYN": 0.39999999999999997, "test/p/SYN": 0.4088888888888889, "test/r/SYN": 0.39148936170212767}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6305525460455038, "test/f1_macro": 0.6268772505825797, "test/f1_micro": 0.6305525460455038, "test/p_macro": 0.637097321721357, "test/p_micro": 0.6305525460455038, "test/r_macro": 0.6212371311593516, "test/r_micro": 0.6305525460455038, "test/f1/Antonym": 0.711779448621554, "test/p/Antonym": 0.741514360313316, "test/r/Antonym": 0.6843373493975904, "test/f1/HasA": 0.6733333333333333, "test/p/HasA": 0.6392405063291139, "test/r/HasA": 0.7112676056338029, "test/f1/HasProperty": 0.796324655436447, "test/p/HasProperty": 0.7854984894259819, "test/r/HasProperty": 0.8074534161490683, "test/f1/IsA": 0.5868392664509169, "test/p/IsA": 0.5811965811965812, "test/r/IsA": 0.5925925925925926, "test/f1/MadeOf": 0.609271523178808, "test/p/MadeOf": 0.7076923076923077, "test/r/MadeOf": 0.5348837209302325, "test/f1/PartOf": 0.6223776223776224, "test/p/PartOf": 0.6312056737588653, "test/r/PartOf": 0.6137931034482759, "test/f1/Synonym": 0.3882149046793761, "test/p/Synonym": 0.37333333333333335, "test/r/Synonym": 0.4043321299638989}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9433122348195033, "test/f1_macro": 0.8521358889073605, "test/f1_micro": 0.9433122348195033, "test/p_macro": 0.8689695129753637, "test/p_micro": 0.9433122348195033, "test/r_macro": 0.8378283080134359, "test/r_micro": 0.9433122348195033, "test/f1/false": 0.955429255160036, "test/p/false": 0.9640808934500453, "test/r/false": 0.9469315149718351, "test/f1/hypo": 0.9023437499999999, "test/p/hypo": 0.9184890656063618, "test/r/hypo": 0.8867562380038387, "test/f1/mero": 0.6018099547511312, "test/p/mero": 0.6584158415841584, "test/r/mero": 0.5541666666666667, "test/f1/sibl": 0.948960595718275, "test/p/sibl": 0.9348922512608895, "test/r/sibl": 0.9634588124114034}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.895017235976183, "test/f1_macro": 0.8915314929167794, "test/f1_micro": 0.895017235976183, "test/p_macro": 0.8924056043823589, "test/p_micro": 0.895017235976183, "test/r_macro": 0.8910879079225317, "test/r_micro": 0.895017235976183, "test/f1/COORD": 0.9739866908650938, "test/p/COORD": 0.961768219832736, "test/r/COORD": 0.9865196078431373, "test/f1/HYPER": 0.7987341772151898, "test/p/HYPER": 0.8184176394293126, "test/r/HYPER": 0.7799752781211372, "test/f1/RANDOM": 0.901873610670054, "test/p/RANDOM": 0.8970309538850284, "test/r/RANDOM": 0.9067688378033205}}
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "roberta-
|
3 |
"architectures": [
|
4 |
"RobertaModel"
|
5 |
],
|
@@ -9,19 +9,19 @@
|
|
9 |
"eos_token_id": 2,
|
10 |
"hidden_act": "gelu",
|
11 |
"hidden_dropout_prob": 0.1,
|
12 |
-
"hidden_size":
|
13 |
"initializer_range": 0.02,
|
14 |
-
"intermediate_size":
|
15 |
"layer_norm_eps": 1e-05,
|
16 |
"max_position_embeddings": 514,
|
17 |
"model_type": "roberta",
|
18 |
-
"num_attention_heads":
|
19 |
-
"num_hidden_layers":
|
20 |
"pad_token_id": 1,
|
21 |
"position_embedding_type": "absolute",
|
22 |
"relbert_config": {
|
23 |
"aggregation_mode": "average_no_mask",
|
24 |
-
"template": "I wasn\u2019t aware of this relationship, but I just read in the encyclopedia that <
|
25 |
},
|
26 |
"torch_dtype": "float32",
|
27 |
"transformers_version": "4.26.1",
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "roberta-base",
|
3 |
"architectures": [
|
4 |
"RobertaModel"
|
5 |
],
|
|
|
9 |
"eos_token_id": 2,
|
10 |
"hidden_act": "gelu",
|
11 |
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
"layer_norm_eps": 1e-05,
|
16 |
"max_position_embeddings": 514,
|
17 |
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
"pad_token_id": 1,
|
21 |
"position_embedding_type": "absolute",
|
22 |
"relbert_config": {
|
23 |
"aggregation_mode": "average_no_mask",
|
24 |
+
"template": "I wasn\u2019t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>\u2019s <mask>"
|
25 |
},
|
26 |
"torch_dtype": "float32",
|
27 |
"transformers_version": "4.26.1",
|
finetuning_config.json
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
{
|
2 |
-
"template": "I wasn\u2019t aware of this relationship, but I just read in the encyclopedia that <
|
3 |
-
"model": "roberta-
|
4 |
"max_length": 64,
|
5 |
"epoch": 10,
|
6 |
"batch": 32,
|
@@ -17,7 +17,7 @@
|
|
17 |
"classification_loss": false,
|
18 |
"loss_function_config": {
|
19 |
"temperature": 0.05,
|
20 |
-
"num_negative":
|
21 |
"num_positive": 10
|
22 |
},
|
23 |
"augment_negative_by_positive": true
|
|
|
1 |
{
|
2 |
+
"template": "I wasn\u2019t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>\u2019s <mask>",
|
3 |
+
"model": "roberta-base",
|
4 |
"max_length": 64,
|
5 |
"epoch": 10,
|
6 |
"batch": 32,
|
|
|
17 |
"classification_loss": false,
|
18 |
"loss_function_config": {
|
19 |
"temperature": 0.05,
|
20 |
+
"num_negative": 400,
|
21 |
"num_positive": 10
|
22 |
},
|
23 |
"augment_negative_by_positive": true
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4c70aba115b9aea37f6758c47c99150b652bf727eee744bc8147b8054e24ae1
|
3 |
+
size 498652017
|
relation_mapping.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.json
CHANGED
@@ -53,8 +53,7 @@
|
|
53 |
"pre_tokenizer": {
|
54 |
"type": "ByteLevel",
|
55 |
"add_prefix_space": false,
|
56 |
-
"trim_offsets": true
|
57 |
-
"use_regex": true
|
58 |
},
|
59 |
"post_processor": {
|
60 |
"type": "RobertaProcessing",
|
@@ -72,8 +71,7 @@
|
|
72 |
"decoder": {
|
73 |
"type": "ByteLevel",
|
74 |
"add_prefix_space": true,
|
75 |
-
"trim_offsets": true
|
76 |
-
"use_regex": true
|
77 |
},
|
78 |
"model": {
|
79 |
"type": "BPE",
|
|
|
53 |
"pre_tokenizer": {
|
54 |
"type": "ByteLevel",
|
55 |
"add_prefix_space": false,
|
56 |
+
"trim_offsets": true
|
|
|
57 |
},
|
58 |
"post_processor": {
|
59 |
"type": "RobertaProcessing",
|
|
|
71 |
"decoder": {
|
72 |
"type": "ByteLevel",
|
73 |
"add_prefix_space": true,
|
74 |
+
"trim_offsets": true
|
|
|
75 |
},
|
76 |
"model": {
|
77 |
"type": "BPE",
|
tokenizer_config.json
CHANGED
@@ -6,7 +6,7 @@
|
|
6 |
"errors": "replace",
|
7 |
"mask_token": "<mask>",
|
8 |
"model_max_length": 512,
|
9 |
-
"name_or_path": "roberta-
|
10 |
"pad_token": "<pad>",
|
11 |
"sep_token": "</s>",
|
12 |
"special_tokens_map_file": null,
|
|
|
6 |
"errors": "replace",
|
7 |
"mask_token": "<mask>",
|
8 |
"model_max_length": 512,
|
9 |
+
"name_or_path": "roberta-base",
|
10 |
"pad_token": "<pad>",
|
11 |
"sep_token": "</s>",
|
12 |
"special_tokens_map_file": null,
|