File size: 6,588 Bytes
d844ec0
821ec3a
 
d844ec0
 
821ec3a
 
 
 
d844ec0
821ec3a
 
 
d844ec0
821ec3a
 
 
 
 
 
 
 
 
 
d844ec0
 
821ec3a
d844ec0
821ec3a
d844ec0
821ec3a
d844ec0
821ec3a
 
 
d844ec0
821ec3a
 
d844ec0
821ec3a
d844ec0
821ec3a
d844ec0
821ec3a
 
 
d844ec0
821ec3a
d844ec0
821ec3a
 
 
d844ec0
821ec3a
d844ec0
821ec3a
d844ec0
821ec3a
d844ec0
821ec3a
 
 
d844ec0
821ec3a
d844ec0
821ec3a
 
 
d844ec0
821ec3a
 
d844ec0
821ec3a
 
 
 
d844ec0
821ec3a
 
d844ec0
821ec3a
 
d844ec0
821ec3a
 
 
d844ec0
821ec3a
d844ec0
821ec3a
 
 
 
 
d844ec0
821ec3a
d844ec0
821ec3a
d844ec0
821ec3a
d844ec0
821ec3a
 
 
 
 
d844ec0
821ec3a
d844ec0
821ec3a
 
 
d844ec0
821ec3a
 
 
d844ec0
 
821ec3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
language:
- en
---

<div align="center">
  <img src="https://github.com/SapienzaNLP/relik/blob/main/relik.png?raw=true" height="150">
  <img src="https://github.com/SapienzaNLP/relik/blob/main/Sapienza_Babelscape.png?raw=true" height="50">
</div>

<div align="center">
  <h1>Retrieve, Read and LinK: Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget</h1>
</div>

<div style="display:flex; justify-content: center; align-items: center; flex-direction: row;">
    <a href="https://2024.aclweb.org/"><img src="http://img.shields.io/badge/ACL-2024-4b44ce.svg"></a> &nbsp; &nbsp; 
    <a href="https://aclanthology.org/"><img src="http://img.shields.io/badge/paper-ACL--anthology-B31B1B.svg"></a> &nbsp; &nbsp; 
    <a href="https://arxiv.org/abs/placeholder"><img src="https://img.shields.io/badge/arXiv-placeholder-b31b1b.svg"></a>
</div>
<div style="display:flex; justify-content: center; align-items: center; flex-direction: row;">
    <a href="https://huggingface.co/collections/sapienzanlp/relik-retrieve-read-and-link-665d9e4a5c3ecba98c1bef19"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Collection-FCD21D"></a> &nbsp; &nbsp;
    <a href="https://github.com/SapienzaNLP/relik"><img src="https://img.shields.io/badge/GitHub-Repo-121013?logo=github&logoColor=white"></a> &nbsp; &nbsp;
    <a href="https://github.com/SapienzaNLP/relik/releases"><img src="https://img.shields.io/github/v/release/SapienzaNLP/relik"></a>
</div>


A blazing fast and lightweight Information Extraction model for **Entity Linking** and **Relation Extraction**.

## ๐Ÿ› ๏ธ Installation

Installation from PyPI

```bash
pip install relik
```

<details>
  <summary>Other installation options</summary>

#### Install with optional dependencies

Install with all the optional dependencies.

```bash
pip install relik[all]
```

Install with optional dependencies for training and evaluation.

```bash
pip install relik[train]
```

Install with optional dependencies for [FAISS](https://github.com/facebookresearch/faiss)

FAISS PyPI package is only available for CPU. For GPU, install it from source or use the conda package.

For CPU:

```bash
pip install relik[faiss]
```

For GPU:

```bash
conda create -n relik python=3.10
conda activate relik

# install pytorch
conda install -y pytorch=2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia

# GPU
conda install -y -c pytorch -c nvidia faiss-gpu=1.8.0
# or GPU with NVIDIA RAFT
conda install -y -c pytorch -c nvidia -c rapidsai -c conda-forge faiss-gpu-raft=1.8.0

pip install relik
```

Install with optional dependencies for serving the models with
[FastAPI](https://fastapi.tiangolo.com/) and [Ray](https://docs.ray.io/en/latest/serve/quickstart.html).

```bash
pip install relik[serve]
```

#### Installation from source

```bash
git clone https://github.com/SapienzaNLP/relik.git
cd relik
pip install -e .[all]
```

</details>

## ๐Ÿš€ Quick Start

[//]: # (Write a short description of the model and how to use it with the `from_pretrained` method.)

ReLiK is a lightweight and fast model for **Entity Linking** and **Relation Extraction**.
It is composed of two main components: a retriever and a reader.
The retriever is responsible for retrieving relevant documents from a large collection,
while the reader is responsible for extracting entities and relations from the retrieved documents.
ReLiK can be used with the `from_pretrained` method to load a pre-trained pipeline.

Here is an example of how to use ReLiK for **Relation Extraction**:

```python
from relik import Relik
from relik.inference.data.objects import RelikOutput

relik = Relik.from_pretrained("sapienzanlp/relik-relation-extraction-nyt-large")
relik_out: RelikOutput = relik("Michael Jordan was one of the best players in the NBA.")
```


    RelikOutput(
      text='Michael Jordan was one of the best players in the NBA.', 
      tokens=Michael Jordan was one of the best players in the NBA., 
      id=0, 
      spans=[
        Span(start=0, end=14, label='--NME--', text='Michael Jordan'), 
        Span(start=50, end=53, label='--NME--', text='NBA')
      ], 
      triplets=[
        Triplets(
          subject=Span(start=0, end=14, label='--NME--', text='Michael Jordan'), 
          label='company', 
          object=Span(start=50, end=53, label='--NME--', text='NBA'), 
          confidence=1.0
          )
      ], 
      candidates=Candidates(
        span=[], 
        triplet=[
                  [
                    [
                      {"text": "company", "id": 4, "metadata": {"definition": "company of this person"}}, 
                      {"text": "nationality", "id": 10, "metadata": {"definition": "nationality of this person or entity"}}, 
                      {"text": "child", "id": 17, "metadata": {"definition": "child of this person"}}, 
                      {"text": "founded by", "id": 0, "metadata": {"definition": "founder or co-founder of this organization, religion or place"}}, 
                      {"text": "residence", "id": 18, "metadata": {"definition": "place where this person has lived"}},
                      ...
                  ]
              ]
          ]
      ),
    )


## ๐Ÿ“Š Performance

The following table shows the results (Micro F1) of ReLiK Large on the NYT dataset:

| Model                                    | NYT | NYT (Pretr) | AIT (m:s) |
|------------------------------------------|------|-------|------------|
| REBEL                                    | 93.1 | 93.4  | 01:45      |
| UiE                                      | 93.5 | --    | --      |
| USM                                      | 94.0 | 94.1  | --      |
| โžก๏ธ [ReLiK<sub>Large<sub>](https://huggingface.co/sapienzanlp/relik-relation-extraction-nyt-large) | **95.0** | **94.9**  | 00:30      |


## ๐Ÿค– Models

Models can be found on [๐Ÿค— Hugging Face](https://huggingface.co/collections/sapienzanlp/relik-retrieve-read-and-link-665d9e4a5c3ecba98c1bef19).

## ๐Ÿ’ฝ Cite this work

If you use any part of this work, please consider citing the paper as follows:

```bibtex
@inproceedings{orlando-etal-2024-relik,
    title     = "Retrieve, Read and LinK: Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget",
    author    = "Orlando, Riccardo and Huguet Cabot, Pere-Llu{\'\i}s and Barba, Edoardo and Navigli, Roberto",
    booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
    month     = aug,
    year      = "2024",
    address   = "Bangkok, Thailand",
    publisher = "Association for Computational Linguistics",
}
```