Feature Extraction
Transformers
Safetensors
English
prismatic
remyx
custom_code
File size: 12,713 Bytes
ccb7017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""
processing_prismatic.py

HuggingFace-style preprocessor definitions for Prismatic VLMs, inheriting from `ProcessorMixin`. Default configuration
specifies `siglip-224px+7b`.
"""

from typing import Any, ClassVar, List, Optional, Tuple, Union

import timm.data
import torch
import torchvision.transforms.functional as TVF
from PIL import Image
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
from transformers import PreTrainedTokenizerBase
from transformers.image_processing_utils import BatchFeature, ImageProcessingMixin
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType


# === Image Processing ===
def letterbox_pad_transform(image: Image.Image, padding_fill_value: Tuple[int, int, int]) -> Image.Image:
    """Given a PIL.Image, pad to square by adding a symmetric border around the height/width."""
    (w, h), max_wh = image.size, max(image.size)
    horizontal_pad, vertical_pad = int((max_wh - w) / 2), int((max_wh - h) / 2)
    padding = (horizontal_pad, vertical_pad, horizontal_pad, vertical_pad)

    return TVF.pad(image, padding, fill=padding_fill_value, padding_mode="constant")


class PrismaticImageProcessor(ImageProcessingMixin):
    model_input_names: ClassVar[List[str]] = ["pixel_values"]

    def __init__(
        self,
        use_fused_vision_backbone: bool = False,
        image_resize_strategy: str = "letterbox",
        input_sizes: Optional[List[Tuple[int, int, int]]] = None,
        interpolations: Optional[List[str]] = None,
        means: Optional[List[Tuple[float, float, float]]] = None,
        stds: Optional[List[Tuple[float, float, float]]] = None,
        **kwargs: str,
    ) -> None:
        """
        Initialize a PrismaticImageProcessor as a wrapper around a torchvision transform; this transform will be
        created by TIMM, and edited to follow our custom `image_resize_strategy` logic.
        @param use_fused_vision_backbone: Boolean indicating single or fused (dual) vision backbone
        @param image_resize_strategy: Prismatic image resize strategy in < resize-naive | resize-crop | letterbox >
        @param input_size: [TIMM :: `data_cfg`] Input image size as tuple (channels, width, height)
        @param interpolation: [TIMM :: `data_cfg`] Interpolation as string (default: "bicubic")
        @param mean: [TIMM :: `data_cfg`] Normalization mean as float tuple (or two-tuple if `fused_backbone`)
        @param std: [TIMM :: `data_cfg`] Normalization std as float tuple (or two-tuple if `fused_backbone`)
        """
        self.use_fused_vision_backbone = use_fused_vision_backbone
        self.image_resize_strategy = image_resize_strategy

        # Handle `None` default values
        input_sizes = [(3, 224, 224)] if input_sizes is None else input_sizes
        means = [(0.5, 0.5, 0.5)] if means is None else means
        stds = [(0.5, 0.5, 0.5)] if stds is None else stds

        # TIMM `data_cfg` Parameters
        self.input_sizes, self.interpolations, self.means, self.stds = input_sizes, interpolations, means, stds

        # Grab torchvision transforms via TIMM =>> need to parse for specific "functional" transform values!
        self.tvf_resize_params, self.tvf_crop_params, self.tvf_normalize_params = [], [], []
        self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None

        for idx in range(len(input_sizes)):
            transform = timm.data.create_transform(
                input_size=self.input_sizes[idx],
                interpolation=self.interpolations[idx],
                mean=self.means[idx],
                std=self.stds[idx],
                crop_pct=1.0,  # Set to 1.0 to ignore cropping (initial Resize sets `input_size`)
                crop_mode="center",  # Default crop mode -- no-op when `crop_pct == 1.0`
                is_training=False,  # No image augmentations when loading the transform!
            )

            # [Validation] Ensure appropriate transform structure, expected sizes
            if not (
                isinstance(transform, Compose)
                and (len(transform.transforms) == 4)
                and isinstance(transform.transforms[0], Resize)
                and isinstance(transform.transforms[1], CenterCrop)
                and isinstance(transform.transforms[2], ToTensor)
                and isinstance(transform.transforms[3], Normalize)
                and (transform.transforms[0].size == self.input_sizes[idx][-1])
                and (transform.transforms[1].size == self.input_sizes[idx][-2:])
            ):
                raise ValueError(f"Unexpected TIMM image transformation structure/sizes: `{transform}`")

            # HF Image Processors *must* be JSON-serializable; as such, cannot have torchvision. as an attribute.
            #   => Instead, we're going to parse the transform and call "torchvision.transforms.functional" (`tvf`)
            resize_t, crop_t, norm_t = transform.transforms[0], transform.transforms[1], transform.transforms[3]
            self.tvf_resize_params.append(
                {
                    "size": resize_t.size,
                    "interpolation": TVF.pil_modes_mapping[resize_t.interpolation],
                    "max_size": None,
                    "antialias": True,
                }
            )
            self.tvf_crop_params.append({"output_size": crop_t.size})
            self.tvf_normalize_params.append(
                {
                    "mean": norm_t.mean.float().numpy().tolist(),
                    "std": norm_t.std.float().numpy().tolist(),
                    "inplace": False,
                }
            )
            self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None

            # Handle Prismatic `image_resize_strategy`
            if self.image_resize_strategy == "resize-naive":
                self.tvf_resize_params[idx]["size"] = (resize_t.size, resize_t.size)
            elif self.image_resize_strategy == "letterbox":
                self.tvf_do_letterbox, self.tvf_letterbox_fill = True, tuple([int(x * 255) for x in self.means[idx]])
            elif self.image_resize_strategy == "resize-crop":
                pass
            else:
                raise ValueError(f"Image resize strategy `{self.image_resize_strategy}` is not supported!")

        # Dispatch **kwargs to super()
        super().__init__(**kwargs)

    def apply_transform(self, img: Image.Image) -> torch.Tensor:
        """Apply `functional` variant of TIMM's Transform = Compose([Resize -> CenterCrop -> ToTensor -> Normalize])"""
        if self.tvf_do_letterbox:
            img = letterbox_pad_transform(img, self.tvf_letterbox_fill)

        # [Contract] Fused Backbones expect "channel-stacked" inputs; we'll unpack on the model side!
        imgs_t = []
        for idx in range(len(self.input_sizes)):
            img_idx = TVF.resize(img, **self.tvf_resize_params[idx])
            img_idx = TVF.center_crop(img_idx, **self.tvf_crop_params[idx])
            img_idx_t = TVF.to_tensor(img_idx)
            img_idx_t = TVF.normalize(img_idx_t, **self.tvf_normalize_params[idx])
            imgs_t.append(img_idx_t)

        # [Contract] `imgs_t` is a list of Tensors of shape [3, input_size, input_size]; stack along dim = 0
        img_t = torch.vstack(imgs_t)

        return img_t

    def preprocess(
        self,
        images: Union[Image.Image, List[Image.Image]],
        return_tensors: Optional[Union[str, TensorType]] = None,
        **_: str,
    ) -> BatchFeature:
        """
        Preprocess an image (or batch of images); note that unlike the `transformers :: BaseImageProcessor` we
        explicitly only handle PIL.Image.Image instances for simplicity.
        @param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
        @param return_tensors: BatchFeature default Tensor format (e.g., "pt" for torch); if None, returns np.ndarray
        @return: Instance of `transformers :: BatchFeature` with a single key "pixel_values"
        """
        if not isinstance(images, list):
            images = [images]

        # Apply `self.img_transform` to each image (will return list of torch.Tensors); stack into "batched" Tensor
        pixel_values = torch.stack([self.apply_transform(img.convert("RGB")) for img in images])

        # Return BatchFeature =>> note that for compatibility, constructor expects Dict[str, np.ndarray], so we convert
        return BatchFeature(data={"pixel_values": pixel_values.float().numpy()}, tensor_type=return_tensors)

    def __call__(self, images: Union[Image.Image, List[Image.Image]], **kwargs) -> BatchFeature:
        return self.preprocess(images, **kwargs)


# === PrismaticProcessor =>> Wraps both ImageProcessor and Tokenizer ===
#   =>> https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/processing_llava.py
class PrismaticProcessor(ProcessorMixin):
    attributes: ClassVar[List[str]] = ["image_processor", "tokenizer"]
    image_processor_class: str = "AutoImageProcessor"
    tokenizer_class: str = "AutoTokenizer"

    def __init__(
        self,
        image_processor: Optional[ImageProcessingMixin] = None,
        tokenizer: Optional[PreTrainedTokenizerBase] = None,
    ) -> None:
        super().__init__(image_processor, tokenizer)

    def __call__(
        self,
        text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
        images: Union[Image.Image, List[Image.Image]],
        padding: Union[bool, str, PaddingStrategy] = False,
        truncation: Optional[Union[bool, str, TruncationStrategy]] = None,
        max_length: Optional[int] = None,
        return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
    ) -> BatchFeature:
        """
        Preprocess a given (batch) of text/images for a Prismatic VLM; forwards text to the underlying LLM's tokenizer,
        forwards images to PrismaticImageProcessor.
        @param text: The (batch) of text to encode; must be a string or list of strings.
        @param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
        @param padding: Sequence padding strategy (if multiple specified) in < True = "longest" | "max_length" | False >
        @param truncation: Truncation strategy for the output sequences; requires `max_length` to be specified
        @param max_length: Maximum length (in tokens) to truncate
        @param return_tensors: Type of return tensors (usually "pt" or TensorType.PYTORCH)
        @return: BatchFeature with keys for `input_ids`, `attention_mask` and `pixel_values`.
        """
        pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"]
        text_inputs = self.tokenizer(
            text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
        )

        # [Validate] Need same number of images and text inputs!
        if pixel_values.shape[0] != text_inputs.input_ids.shape[0]:
            raise ValueError("Batch is malformed; expected same number of images and text inputs!")

        return BatchFeature(data={**text_inputs, "pixel_values": pixel_values})

    # === Tokenizer Dispatch Utilities =>> check `PreTrainedTokenizerBase` for documentation ===
    def batch_decode(
        self,
        sequences: Union[List[int], List[List[int]], torch.Tensor, Any],  # `Any` = np.ndarray | tf.Tensor
        skip_special_tokens: bool = False,
        clean_up_tokenization_spaces: Optional[bool] = None,
        **kwargs: str,
    ) -> List[str]:
        return self.tokenizer.batch_decode(
            sequences=sequences,
            skip_special_tokens=skip_special_tokens,
            clean_up_tokenization_spaces=clean_up_tokenization_spaces,
            **kwargs,
        )

    def decode(
        self,
        token_ids: Union[int, List[int], torch.Tensor, Any],  # `Any` = np.ndarray | tf.Tensor
        skip_special_tokens: bool = False,
        clean_up_tokenization_spaces: Optional[bool] = None,
        **kwargs: str,
    ) -> str:
        return self.tokenizer.decode(
            token_ids=token_ids,
            skip_special_tokens=skip_special_tokens,
            clean_up_tokenization_spaces=clean_up_tokenization_spaces,
            **kwargs,
        )

    @property
    def model_input_names(self) -> List[str]:
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names

        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))