asahi417 commited on
Commit
4429048
1 Parent(s): 08ae0a7

model update

Browse files
Files changed (2) hide show
  1. README.md +9 -9
  2. relation_mapping.json +1 -0
README.md CHANGED
@@ -2,7 +2,7 @@
2
  datasets:
3
  - relbert/semeval2012_relational_similarity
4
  model-index:
5
- - name: relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification
6
  results:
7
  - task:
8
  name: Relation Mapping
@@ -14,7 +14,7 @@ model-index:
14
  metrics:
15
  - name: Accuracy
16
  type: accuracy
17
- value: 0.944047619047619
18
  - task:
19
  name: Analogy Questions (SAT full)
20
  type: multiple-choice-qa
@@ -153,27 +153,27 @@ model-index:
153
  value: 0.9002463330589072
154
 
155
  ---
156
- # relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification
157
 
158
  RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
159
  [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
160
  Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
161
  It achieves the following results on the relation understanding tasks:
162
- - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification/raw/main/analogy.json)):
163
  - Accuracy on SAT (full): 0.5080213903743316
164
  - Accuracy on SAT: 0.5192878338278932
165
  - Accuracy on BATS: 0.6653696498054474
166
  - Accuracy on U2: 0.45614035087719296
167
  - Accuracy on U4: 0.5393518518518519
168
  - Accuracy on Google: 0.84
169
- - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification/raw/main/classification.json)):
170
  - Micro F1 score on BLESS: 0.9132138014163026
171
  - Micro F1 score on CogALexV: 0.8502347417840377
172
  - Micro F1 score on EVALution: 0.6852654387865655
173
  - Micro F1 score on K&H+N: 0.9604228976838005
174
  - Micro F1 score on ROOT09: 0.9022250078345346
175
- - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification/raw/main/relation_mapping.json)):
176
- - Accuracy on Relation Mapping: 0.944047619047619
177
 
178
 
179
  ### Usage
@@ -184,7 +184,7 @@ pip install relbert
184
  and activate model as below.
185
  ```python
186
  from relbert import RelBERT
187
- model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification")
188
  vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
189
  ```
190
 
@@ -216,7 +216,7 @@ The following hyperparameters were used during training:
216
  - n_sample: 640
217
  - gradient_accumulation: 8
218
 
219
- The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification/raw/main/trainer_config.json).
220
 
221
  ### Reference
222
  If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
 
2
  datasets:
3
  - relbert/semeval2012_relational_similarity
4
  model-index:
5
+ - name: relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification-conceptnet-validated
6
  results:
7
  - task:
8
  name: Relation Mapping
 
14
  metrics:
15
  - name: Accuracy
16
  type: accuracy
17
+ value: 0.856984126984127
18
  - task:
19
  name: Analogy Questions (SAT full)
20
  type: multiple-choice-qa
 
153
  value: 0.9002463330589072
154
 
155
  ---
156
+ # relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification-conceptnet-validated
157
 
158
  RelBERT fine-tuned from [roberta-large](https://huggingface.co/roberta-large) on
159
  [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity).
160
  Fine-tuning is done via [RelBERT](https://github.com/asahi417/relbert) library (see the repository for more detail).
161
  It achieves the following results on the relation understanding tasks:
162
+ - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification-conceptnet-validated/raw/main/analogy.json)):
163
  - Accuracy on SAT (full): 0.5080213903743316
164
  - Accuracy on SAT: 0.5192878338278932
165
  - Accuracy on BATS: 0.6653696498054474
166
  - Accuracy on U2: 0.45614035087719296
167
  - Accuracy on U4: 0.5393518518518519
168
  - Accuracy on Google: 0.84
169
+ - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification-conceptnet-validated/raw/main/classification.json)):
170
  - Micro F1 score on BLESS: 0.9132138014163026
171
  - Micro F1 score on CogALexV: 0.8502347417840377
172
  - Micro F1 score on EVALution: 0.6852654387865655
173
  - Micro F1 score on K&H+N: 0.9604228976838005
174
  - Micro F1 score on ROOT09: 0.9022250078345346
175
+ - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification-conceptnet-validated/raw/main/relation_mapping.json)):
176
+ - Accuracy on Relation Mapping: 0.856984126984127
177
 
178
 
179
  ### Usage
 
184
  and activate model as below.
185
  ```python
186
  from relbert import RelBERT
187
+ model = RelBERT("relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification-conceptnet-validated")
188
  vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (1024, )
189
  ```
190
 
 
216
  - n_sample: 640
217
  - gradient_accumulation: 8
218
 
219
+ The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/relbert/roberta-large-semeval2012-mask-prompt-b-nce-classification-conceptnet-validated/raw/main/trainer_config.json).
220
 
221
  ### Reference
222
  If you use any resource from RelBERT, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
relation_mapping.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"accuracy": 0.856984126984127, "prediction": [{"source": ["solar system", "sun", "planet", "mass", "attracts", "revolves", "gravity"], "true": ["atom", "nucleus", "electron", "charge", "attracts", "revolves", "electromagnetism"], "pred": ["atom", "nucleus", "electron", "charge", "attracts", "revolves", "electromagnetism"], "alignment_match": true, "accuracy": 1, "similarity": 0.9999999001551702, "similarity_true": 0.9999999001551702}, {"source": ["water", "flows", "pressure", "water tower", "bucket", "filling", "emptying", "hydrodynamics"], "true": ["heat", "transfers", "temperature", "burner", "kettle", "heating", "cooling", "thermodynamics"], "pred": ["heat", "transfers", "temperature", "burner", "kettle", "heating", "cooling", "thermodynamics"], "alignment_match": true, "accuracy": 1, "similarity": 0.9640935490345183, "similarity_true": 0.9640935490345183}, {"source": ["waves", "shore", "reflects", "water", "breakwater", "rough", "calm", "crashing"], "true": ["sounds", "wall", "echoes", "air", "insulation", "loud", "quiet", "vibrating"], "pred": ["sounds", "wall", "echoes", "air", "insulation", "loud", "quiet", "vibrating"], "alignment_match": true, "accuracy": 1, "similarity": 0.9760887136578521, "similarity_true": 0.9760887136578521}, {"source": ["combustion", "fire", "fuel", "burning", "hot", "intense", "oxygen", "carbon dioxide"], "true": ["respiration", "animal", "food", "breathing", "living", "vigorous", "oxygen", "carbon dioxide"], "pred": ["respiration", "animal", "food", "breathing", "living", "vigorous", "oxygen", "carbon dioxide"], "alignment_match": true, "accuracy": 1, "similarity": 0.9999999000984193, "similarity_true": 0.9999999000984193}, {"source": ["sound", "low", "high", "echoes", "loud", "quiet", "horn"], "true": ["light", "red", "violet", "reflects", "bright", "dim", "lens"], "pred": ["light", "violet", "red", "reflects", "bright", "dim", "lens"], "alignment_match": false, "accuracy": 0.7142857142857143, "similarity": 0.9832683703777002, "similarity_true": 0.9832683703777002}, {"source": ["projectile", "trajectory", "earth", "parabolic", "air", "gravity", "attracts"], "true": ["planet", "orbit", "sun", "elliptical", "space", "gravity", "attracts"], "pred": ["planet", "orbit", "sun", "elliptical", "space", "gravity", "attracts"], "alignment_match": true, "accuracy": 1, "similarity": 0.9999999004021971, "similarity_true": 0.9999999004021971}, {"source": ["breeds", "selection", "conformance", "artificial", "popularity", "breeding", "domesticated"], "true": ["species", "competition", "adaptation", "natural", "fitness", "mating", "wild"], "pred": ["species", "competition", "adaptation", "natural", "fitness", "mating", "wild"], "alignment_match": true, "accuracy": 1, "similarity": 0.9580608655086439, "similarity_true": 0.9580608655086439}, {"source": ["ball", "billiards", "speed", "table", "bouncing", "moving", "slow", "fast"], "true": ["molecules", "gas", "temperature", "container", "pressing", "moving", "cold", "hot"], "pred": ["molecules", "gas", "temperature", "container", "pressing", "moving", "cold", "hot"], "alignment_match": true, "accuracy": 1, "similarity": 0.9798969494469459, "similarity_true": 0.9798969494469459}, {"source": ["computer", "processing", "erasing", "write", "read", "memory", "outputs", "inputs", "bug"], "true": ["mind", "thinking", "forgetting", "memorize", "remember", "memory", "muscles", "senses", "mistake"], "pred": ["mind", "thinking", "forgetting", "memorize", "remember", "muscles", "memory", "senses", "mistake"], "alignment_match": false, "accuracy": 0.7777777777777778, "similarity": 0.9560069180949828, "similarity_true": 0.9560069180949828}, {"source": ["slot machines", "reels", "spinning", "winning", "losing"], "true": ["bacteria", "genes", "mutating", "reproducing", "dying"], "pred": ["bacteria", "genes", "mutating", "reproducing", "dying"], "alignment_match": true, "accuracy": 1, "similarity": 0.9502657862779677, "similarity_true": 0.9502657862779677}, {"source": ["war", "soldier", "destroy", "fighting", "defeat", "attacks", "weapon"], "true": ["argument", "debater", "refute", "arguing", "acceptance", "criticizes", "logic"], "pred": ["logic", "debater", "refute", "arguing", "acceptance", "criticizes", "argument"], "alignment_match": false, "accuracy": 0.7142857142857143, "similarity": 0.9573231625378441, "similarity_true": 0.9573231625378441}, {"source": ["buyer", "merchandise", "buying", "selling", "returning", "valuable", "worthless"], "true": ["believer", "belief", "accepting", "advocating", "rejecting", "true", "false"], "pred": ["believer", "belief", "advocating", "rejecting", "accepting", "true", "false"], "alignment_match": false, "accuracy": 0.5714285714285714, "similarity": 0.9769887921676369, "similarity_true": 0.9769887921676369}, {"source": ["foundations", "buildings", "supporting", "solid", "weak", "crack"], "true": ["reasons", "theories", "confirming", "rational", "dubious", "flaw"], "pred": ["reasons", "theories", "confirming", "rational", "dubious", "flaw"], "alignment_match": true, "accuracy": 1, "similarity": 0.9775413986800202, "similarity_true": 0.9775413986800202}, {"source": ["obstructions", "destination", "route", "traveller", "traveling", "companion", "arriving"], "true": ["difficulties", "goal", "plan", "person", "problem solving", "partner", "succeeding"], "pred": ["difficulties", "goal", "plan", "person", "problem solving", "partner", "succeeding"], "alignment_match": true, "accuracy": 1, "similarity": 0.9564770070760062, "similarity_true": 0.9564770070760062}, {"source": ["money", "allocate", "budget", "effective", "cheap", "expansive"], "true": ["time", "invest", "schedule", "efficient", "quick", "slow"], "pred": ["time", "invest", "schedule", "efficient", "slow", "quick"], "alignment_match": false, "accuracy": 0.6666666666666666, "similarity": 0.9870444635812574, "similarity_true": 0.9782726986084077}, {"source": ["seeds", "planted", "fruitful", "fruit", "grow", "wither", "blossom"], "true": ["ideas", "inspired", "productive", "product", "develop", "fail", "succeed"], "pred": ["ideas", "inspired", "productive", "product", "develop", "fail", "succeed"], "alignment_match": true, "accuracy": 1, "similarity": 0.9769822092986659, "similarity_true": 0.9769822092986659}, {"source": ["machine", "working", "turned on", "turned off", "broken", "power", "repair"], "true": ["mind", "thinking", "awake", "asleep", "confused", "intelligence", "therapy"], "pred": ["mind", "awake", "intelligence", "asleep", "confused", "therapy", "thinking"], "alignment_match": false, "accuracy": 0.42857142857142855, "similarity": 0.9722673187290215, "similarity_true": 0.9644024785198224}, {"source": ["object", "hold", "weight", "heavy", "light"], "true": ["idea", "understand", "analyze", "important", "trivial"], "pred": ["idea", "analyze", "understand", "important", "trivial"], "alignment_match": false, "accuracy": 0.6, "similarity": 0.9524788015890262, "similarity_true": 0.9524788015890262}, {"source": ["follow", "leader", "path", "follower", "lost", "wanders", "twisted", "straight"], "true": ["understand", "speaker", "argument", "listener", "misunderstood", "digresses", "complicated", "simple"], "pred": ["understand", "speaker", "argument", "listener", "misunderstood", "digresses", "complicated", "simple"], "alignment_match": true, "accuracy": 1, "similarity": 0.9687219337558954, "similarity_true": 0.9687219337558954}, {"source": ["seeing", "light", "illuminating", "darkness", "view", "hidden"], "true": ["understanding", "knowledge", "explaining", "confusion", "interpretation", "secret"], "pred": ["explaining", "knowledge", "understanding", "confusion", "interpretation", "secret"], "alignment_match": false, "accuracy": 0.6666666666666666, "similarity": 0.9275690213197154, "similarity_true": 0.9145135371176686}]}