ppo-LunarLander-v2 / config.json
Magala Reuben
Upload PPO LunarLander-v2 trained agent
1c6e8ad
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdc3806e160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdc3806e1f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdc3806e280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdc3806e310>", "_build": "<function ActorCriticPolicy._build at 0x7fdc3806e3a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fdc3806e430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdc3806e4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdc3806e550>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdc3806e5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdc3806e670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdc3806e700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdc3806e790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdbd6dec9c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681280561263867192, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAZTL1Ozbc/MKO+vjRbXL1oIX+9kzGCvgAAAAAAAAAADQ2+veSdgD8LcK69wsr6vnVngr5uZ3K7AAAAAAAAAAAzxUE8f28zP2/VpryHJ9W+zpfDu/oq0zwAAAAAAAAAAADCcjz8wTw9qHnUu9fSkb4cP4o9yAIPvQAAAAAAAAAAM1m+vesSQz8/nEE9VhDtvrLgG72zTNw9AAAAAAAAAAAzG5e7QwtfvK00zbv+ahY9CkvPvcZE7T0AAIA/AACAP02NKz5u4uc95IAPv1bfhb5E2Hy8wo6zvgAAAAAAAAAAjff0PUVeCz7r4gS+l2mlvjCyTzzhGjA9AAAAAAAAAACajX08TlinPb7Hib7/uYy+s7yEvj4BET0AAAAAAAAAALObnT0C2k8/TFXCPT06476jr+89XjJoPAAAAAAAAAAAJpmoPSuSiT9VVgg+zRcMv00qID6P5A09AAAAAAAAAACay0E9XAcCutLvFzTvkKSuZFMqOwWnl7MAAIA/AACAPybJpb3bj4k/VUq0vSfx874UHRy+tsSsPAAAAAAAAAAAM88bPgj0ND9YQZy9DM7rvqeMBT6NOF++AAAAAAAAAADNnaC9LkGIP1Z9F77figi/v6NPvlidM70AAAAAAAAAADO6Qj1IrY66BQ4Ntd5DPC48ujC7+n1rNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEK/rF6z1ckCUhpRSlIwBbJRL5IwBdJRHQLIOjTBInSh1fZQoaAZoCWgPQwgdBB2tKnlyQJSGlFKUaBVL32gWR0CyDpN0FKTTdX2UKGgGaAloD0MIbjKqDOPacECUhpRSlGgVS8hoFkdAsg6g6U7jk3V9lChoBmgJaA9DCC4CY33DU3FAlIaUUpRoFUvSaBZHQLIOvc1wYLt1fZQoaAZoCWgPQwjdJtwr80ZvQJSGlFKUaBVL22gWR0CyDsxQ3xWldX2UKGgGaAloD0MIP6n26XjlcUCUhpRSlGgVS/VoFkdAsg7PzBhx53V9lChoBmgJaA9DCP9YiA7BeHFAlIaUUpRoFUvnaBZHQLIPFVh1DBx1fZQoaAZoCWgPQwgbR6zFp0lyQJSGlFKUaBVLw2gWR0CyDyV9roGIdX2UKGgGaAloD0MIvqQxWsd9ckCUhpRSlGgVS+5oFkdAsg8pnYg7o3V9lChoBmgJaA9DCO571F8viXFAlIaUUpRoFUvPaBZHQLIPLn5i3G51fZQoaAZoCWgPQwjLDvEPmxZzQJSGlFKUaBVL2GgWR0CyD2KvRqoIdX2UKGgGaAloD0MIUwd5PZhcckCUhpRSlGgVS+toFkdAsg9uZKFqSHV9lChoBmgJaA9DCDy+vWuQ63FAlIaUUpRoFUvbaBZHQLIPgFWXC0p1fZQoaAZoCWgPQwgXDRmPkhtzQJSGlFKUaBVLxmgWR0CyD57HQyAQdX2UKGgGaAloD0MINZpcjAF4c0CUhpRSlGgVS+JoFkdAsg+fZHuqm3V9lChoBmgJaA9DCK7yBMIO93FAlIaUUpRoFUvXaBZHQLIPzF23azx1fZQoaAZoCWgPQwgyc4HLY9twQJSGlFKUaBVL62gWR0CyD8+ivgWKdX2UKGgGaAloD0MIgjl6/J7yc0CUhpRSlGgVS/ZoFkdAsg/T7VJ+UnV9lChoBmgJaA9DCM5PcRy4IHRAlIaUUpRoFUvGaBZHQLIP4C4jKPp1fZQoaAZoCWgPQwghkbbxJwhyQJSGlFKUaBVL/WgWR0CyD/UO7QLNdX2UKGgGaAloD0MIy7kUV5VEb0CUhpRSlGgVS/JoFkdAshAScJ+lTHV9lChoBmgJaA9DCOnUlc+yoHFAlIaUUpRoFUvwaBZHQLIQIPHktEp1fZQoaAZoCWgPQwj2CDVDao1yQJSGlFKUaBVLz2gWR0CyEE8abWmQdX2UKGgGaAloD0MIcvp6vmZSbkCUhpRSlGgVS95oFkdAshBa+oLofXV9lChoBmgJaA9DCHXkSGfgZnJAlIaUUpRoFUvoaBZHQLIQbapgkTp1fZQoaAZoCWgPQwgJGjOJull0QJSGlFKUaBVL+GgWR0CyEG9Z7ojfdX2UKGgGaAloD0MIOQmlL4RXcUCUhpRSlGgVS9poFkdAshT8RsdkrnV9lChoBmgJaA9DCHy3eeNkr3FAlIaUUpRoFUv8aBZHQLIVJBguyu91fZQoaAZoCWgPQwg730+N1z9yQJSGlFKUaBVL2WgWR0CyFTK9PDYRdX2UKGgGaAloD0MIbEPFOL96c0CUhpRSlGgVS+JoFkdAshVBqtYCAHV9lChoBmgJaA9DCNasM76voW1AlIaUUpRoFUvNaBZHQLIVVVEd/8V1fZQoaAZoCWgPQwg2HmyxG/5yQJSGlFKUaBVNDwFoFkdAshVkyhzvJHV9lChoBmgJaA9DCAPOUrJclXFAlIaUUpRoFUvkaBZHQLIVdVU+9rZ1fZQoaAZoCWgPQwhXsmMjkFlwQJSGlFKUaBVL3mgWR0CyFZbEUCaJdX2UKGgGaAloD0MIEf3a+qk7ckCUhpRSlGgVS/toFkdAshWe3azu4XV9lChoBmgJaA9DCASSsG+ntXFAlIaUUpRoFUvTaBZHQLIVsJEpiJB1fZQoaAZoCWgPQwgLt3wkZdNyQJSGlFKUaBVNAwFoFkdAshW1HlOoHnV9lChoBmgJaA9DCCqRRC9j3XFAlIaUUpRoFUvMaBZHQLIV1EKVpsZ1fZQoaAZoCWgPQwh+Oh4z0AtyQJSGlFKUaBVL92gWR0CyFdP0yxiYdX2UKGgGaAloD0MIjWK5pVU+ckCUhpRSlGgVS8xoFkdAshXwwztTk3V9lChoBmgJaA9DCFa5UPkXEXBAlIaUUpRoFUvyaBZHQLIWFBTn7pF1fZQoaAZoCWgPQwg8EcR5uO1yQJSGlFKUaBVL0mgWR0CyFjKh+OOsdX2UKGgGaAloD0MInIh+bT3IcUCUhpRSlGgVTQ8BaBZHQLIWVCjk+5h1fZQoaAZoCWgPQwhdbjDU4fdyQJSGlFKUaBVL2WgWR0CyFmDM7lq8dX2UKGgGaAloD0MIpIriVdbYcECUhpRSlGgVS9toFkdAshaAJ7b+LnV9lChoBmgJaA9DCN6rVia8NHNAlIaUUpRoFUvcaBZHQLIWoy8BdUt1fZQoaAZoCWgPQwjW/PhLS8NzQJSGlFKUaBVL6GgWR0CyFqbEk0JodX2UKGgGaAloD0MIkGYsmo52ckCUhpRSlGgVS9VoFkdAshapthuwYHV9lChoBmgJaA9DCJEKYwsBpXBAlIaUUpRoFU0NAWgWR0CyFr10DEFXdX2UKGgGaAloD0MI71UrEz5zcUCUhpRSlGgVS9RoFkdAshbIo+fRNXV9lChoBmgJaA9DCHIxBtZxqm5AlIaUUpRoFUvYaBZHQLIW7IcBEKF1fZQoaAZoCWgPQwgw2XiwhU9wQJSGlFKUaBVL3GgWR0CyFu2WMS9NdX2UKGgGaAloD0MIEhWqm4s6cUCUhpRSlGgVS/JoFkdAshb5vhqCYnV9lChoBmgJaA9DCD2cwHQawnBAlIaUUpRoFUvTaBZHQLIXBBeokzJ1fZQoaAZoCWgPQwj+f5wwYSdyQJSGlFKUaBVL1WgWR0CyFwY7aIvbdX2UKGgGaAloD0MIgO7Lma1yckCUhpRSlGgVTQgBaBZHQLIXgpRoAXF1fZQoaAZoCWgPQwiKkSVzrMNwQJSGlFKUaBVL3WgWR0CyF4b52yLRdX2UKGgGaAloD0MIYK+w4L4JckCUhpRSlGgVS/ZoFkdAsheRuwX67HV9lChoBmgJaA9DCKRyE7U0CHJAlIaUUpRoFUvTaBZHQLIXs9oexOd1fZQoaAZoCWgPQwgN/n4x255wQJSGlFKUaBVL4WgWR0CyF70+PikwdX2UKGgGaAloD0MI/vFetfIvcUCUhpRSlGgVS9RoFkdAshgKzQeFL3V9lChoBmgJaA9DCJlGk4uxCnNAlIaUUpRoFUvQaBZHQLIYJ7mMfih1fZQoaAZoCWgPQwiT/IhfMTlwQJSGlFKUaBVL+mgWR0CyGC0CFK02dX2UKGgGaAloD0MIKT+p9qkgckCUhpRSlGgVS+hoFkdAshg6y4Wk8HV9lChoBmgJaA9DCI/GoX4XK3NAlIaUUpRoFUvmaBZHQLIYasKb8WN1fZQoaAZoCWgPQwhLkBFQoZVyQJSGlFKUaBVL/mgWR0CyGHInjQzDdX2UKGgGaAloD0MIBMsRMhATcUCUhpRSlGgVS9RoFkdAshh/CUHIIXV9lChoBmgJaA9DCGSRJt6BdW5AlIaUUpRoFUvfaBZHQLIYlHGjsUt1fZQoaAZoCWgPQwiFtTF2QmpxQJSGlFKUaBVL5mgWR0CyGMOj2zv7dX2UKGgGaAloD0MIQdZTq6+wcECUhpRSlGgVS/FoFkdAshjJzIV/MHV9lChoBmgJaA9DCCycpPmjJHBAlIaUUpRoFUvoaBZHQLIYy8IzFdd1fZQoaAZoCWgPQwh/L4UHDRJyQJSGlFKUaBVLymgWR0CyGR4KQaJidX2UKGgGaAloD0MIUd1c/G25cUCUhpRSlGgVS8NoFkdAshk9hiLEUHV9lChoBmgJaA9DCPt3feasqW1AlIaUUpRoFUvjaBZHQLIZTQr+YMR1fZQoaAZoCWgPQwgaMbPPI5JyQJSGlFKUaBVL9WgWR0CyGYFDKHO9dX2UKGgGaAloD0MInIu/7ck2c0CUhpRSlGgVS+poFkdAshmbWXkYGnV9lChoBmgJaA9DCP7xXrWyIXNAlIaUUpRoFUvTaBZHQLIZxFocrAh1fZQoaAZoCWgPQwi2K/TBculyQJSGlFKUaBVL02gWR0CyGeiKNyYHdX2UKGgGaAloD0MIDAHAsecvb0CUhpRSlGgVS9poFkdAshn0gOjIrHV9lChoBmgJaA9DCJmc2hkmAnNAlIaUUpRoFUvDaBZHQLIaL8gZCOZ1fZQoaAZoCWgPQwgjFcYWAhRxQJSGlFKUaBVL02gWR0CyGjAOrhitdX2UKGgGaAloD0MIfa8hOG67cUCUhpRSlGgVS9doFkdAshoyaG5+Y3V9lChoBmgJaA9DCEJbzqU4M3FAlIaUUpRoFUvRaBZHQLIajDpkf9x1fZQoaAZoCWgPQwikpl1M88BwQJSGlFKUaBVL/2gWR0CyGqIjjaPCdX2UKGgGaAloD0MI1Ce5w+bHc0CUhpRSlGgVS+JoFkdAshqusCDEnHV9lChoBmgJaA9DCLFR1m+mEnJAlIaUUpRoFU0pAWgWR0CyGr22LHdXdX2UKGgGaAloD0MI6Qq2EY/1cECUhpRSlGgVS89oFkdAshsV9QXQ+nV9lChoBmgJaA9DCHgnnx5bum9AlIaUUpRoFUvZaBZHQLIbQ2ovSMN1fZQoaAZoCWgPQwhk5gKXB6pxQJSGlFKUaBVNIQFoFkdAshtN2Qnx8XV9lChoBmgJaA9DCCdMGM0KjnJAlIaUUpRoFU0QAWgWR0CyG5JXMhX9dX2UKGgGaAloD0MIDR07qIS1ckCUhpRSlGgVS+5oFkdAshuzO2RaHXV9lChoBmgJaA9DCP3YJD9iY3BAlIaUUpRoFUvMaBZHQLIb1AvL5h11fZQoaAZoCWgPQwjSAN4CySVxQJSGlFKUaBVL/GgWR0CyG+4N3GGVdX2UKGgGaAloD0MIGt1B7Eykb0CUhpRSlGgVS+JoFkdAshv7R6Ww/3V9lChoBmgJaA9DCM07TtGR9G9AlIaUUpRoFUvPaBZHQLIcFVea8Yh1fZQoaAZoCWgPQwiBIhYxbAVvQJSGlFKUaBVL3WgWR0CyHC5D7ZWadX2UKGgGaAloD0MInpeKjXlncUCUhpRSlGgVS+VoFkdAshw8C0WuYHV9lChoBmgJaA9DCF/QQgKGNXNAlIaUUpRoFUu+aBZHQLIcPrz5GjN1fZQoaAZoCWgPQwh+rOC3ofVyQJSGlFKUaBVNGAFoFkdAshxBGpda+3V9lChoBmgJaA9DCB+BP/z8+HJAlIaUUpRoFUvKaBZHQLIcX/W1+iJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}