File size: 6,123 Bytes
0b70b07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import os
import argparse
import cv2
import numpy as np
from PIL import Image
from pathlib import Path
from glob import glob
from tqdm import tqdm
import torch
import torchvision.transforms as tf
from segmentation_models_pytorch import Linknet
import myutils
# ROOT_DIR = str(Path(__file__).resolve().parents[0])
ROOT_DIR = './'
# time_str = timestr = time.strftime("%Y-%m-%d %H-%M-%S")
# DEFAULT_OUT = os.path.join(ROOT_DIR, 'output', 'test_waterseg', time_str)
DEFAULT_OUT = os.path.join(ROOT_DIR, 'output', 'segs')
# DEFAULT_PALETTE = os.path.join(ROOT_DIR, "assets", "mask_palette.png")
# sys.path.append(ROOT_DIR)
# print("Added", ROOT_DIR, "to PATH.")
def norm_imagenet(img_pil, dims):
"""
Normalizes and resizes input image
:param img_pil: PIL Image
:param dims: Model's expected input dimensions
:return: Normalized Image as a Tensor
"""
# Mean and stddev of ImageNet dataset
mean = torch.tensor([0.485, 0.456, 0.406])
std = torch.tensor([0.229, 0.224, 0.225])
# Resize, convert to tensor, normalize
transform_norm = tf.Compose([
tf.Resize([dims[0], dims[1]]),
tf.ToTensor(),
tf.Normalize(mean, std)
])
img_norm = transform_norm(img_pil)
return img_norm
def predict_one(path, model, mask_outdir, overlay_outdir, device):
"""
Predicts a single image from path
:param path: Path to image
:param model: Loaded Torch Model
:param mask_outdir: Filepath to mask out directory
:param overlay_outdir: Filepath to overlay out directory
:return: None
"""
img_pil = myutils.load_image_in_PIL(path)
# Prediction is an PIL Image of 0s and 1s
prediction = predict_pil(model, img_pil, model_dims=(416, 416), device=device)
basename = str(Path(os.path.basename(path)).stem)
mask_savepth = os.path.join(mask_outdir, basename + '.png')
# mask_save = prediction.convert('RGB')
prediction.save(mask_savepth)
over_savepth = os.path.join(overlay_outdir, basename + '.png')
img_np = cv2.cvtColor(np.array(img_pil), cv2.COLOR_RGB2BGR)
overlay_np = myutils.add_overlay(img_np, np.array(prediction))
cv2.imwrite(over_savepth, overlay_np)
# overlay_np = np.array(img_pil) * 1 + np.array(prediction.convert('RGB')) * 0.8
# overlay_np = overlay_np.clip(0, 255)
# Image.fromarray(overlay_np.astype(np.uint8)).save(over_savepth)
def predict_pil(model, img_pil, model_dims, device):
"""
Predicts a single PIL Image
:param model: Loaded PyTorch model
:param img_pil: PIL image
:param model_dims: Model input dimensions
:return: Segmentation prediction as PIL Image
"""
img_np = np.array(img_pil)
img_tensor_norm = norm_imagenet(img_pil, model_dims)
# Pipeline to resize the prediction to the original image dimensions
pred_resize = tf.Compose([tf.Resize([img_np.shape[0], img_np.shape[1]])])
# Add extra dimension at front as model expects input 1*3*dimX*dimY (batch size of 1)
input_data = img_tensor_norm.unsqueeze(0)
try:
# print("Converted input image to cuda.")
prediction = model.predict(input_data.to(device))
except:
print("Did not convert input image to cuda.")
prediction = model.predict(input_data)
prediction = pred_resize(prediction)
prediction = myutils.postprocessing_pred(prediction.squeeze().cpu().round().numpy().astype(np.uint8))
prediction = Image.fromarray(prediction).convert('P')
prediction.putpalette(myutils.color_palette)
return prediction
def test_waterseg(model_path, test_path, test_name, out_path, device):
"""
Tests either a single or an entire folder of images
:param args: Command line args
:return: None
"""
model = torch.load(model_path)
print('############################################')
print('############################################')
print('############################################')
test_path = test_path
out_path = os.path.join(out_path, test_name)
mask_out = os.path.join(out_path, 'mask')
overlay_out = os.path.join(out_path, 'overlay')
if not os.path.exists(mask_out):
os.makedirs(mask_out)
if not os.path.exists(overlay_out):
os.makedirs(overlay_out)
if os.path.isfile(test_path):
predict_one(test_path, model, mask_out, overlay_out, device)
elif os.path.isdir(test_path):
paths = glob(os.path.join(test_path, '*.jpg')) + glob(os.path.join(test_path, '*.png'))
for path in tqdm(paths):
predict_one(path, model, mask_out, overlay_out, device)
else:
print("Error: Unknown path type:", test_path)
if __name__ == '__main__':
# Hyper parameters
parser = argparse.ArgumentParser(description='V-FloodNet: Water Image Segmentation')
# Required: Path to the .pth file.
parser.add_argument('--model-path',
default='./records/link_efficientb4_model.pth',
type=str,
metavar='PATH',
help='Path to the model')
# Required: Path to either the single file or directory of files containing .jpg or .png images
parser.add_argument('--test-path',
type=str,
metavar='PATH',
required=True,
help='Can point to folder or an individual jpg/png image')
parser.add_argument('--test-name',
type=str,
required=True,
help='Test name')
parser.add_argument('--out-path',
default=DEFAULT_OUT,
type=str,
metavar='PATH',
help='(OPTIONAL) Path to output folder, defaults to project root/output')
args = parser.parse_args()
# Device
device = torch.device('cpu')
if torch.cuda.is_available():
device = torch.device('cuda')
test_waterseg(args.model_path, args.test_path, args.test_name, args.out_path, device)
print(myutils.gct(), 'Test image segmentation done.')
|