File size: 5,500 Bytes
0b70b07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
from tqdm import tqdm, trange
import os
import argparse
from glob import glob
import torch
from torch import utils
from torch.nn import functional as F
from torchvision.transforms import functional as TF
from torchvision.transforms import InterpolationMode

from video_module.dataset import Video_DS
from video_module.model import AFB_URR, FeatureBank
from test_image_seg import test_waterseg
import myutils

torch.set_grad_enabled(False)


def get_args():
    parser = argparse.ArgumentParser(description='V-FloodNet: Water Video Segmentation')
    parser.add_argument('--gpu', type=int, default=0, help='GPU card id.')
    parser.add_argument('--budget', type=int, default=250000, help='Max number of features in the feature bank.')
    parser.add_argument('--viz', action='store_true', default=True, help='Visualize data.')
    parser.add_argument('--model-path', type=str, required=True, help='Path to the checkpoint.')
    parser.add_argument('--update-rate', type=float, default=0.1, help='Update Rate for merging new features.')
    parser.add_argument('--merge-thres', type=float, default=0.95, help='Merging Rate threshold.')
    parser.add_argument('--test-path', type=str, required=True, help='Path to the test video frames.')
    parser.add_argument('--test-name', type=str, required=True, help='Name for the test video.')
    return parser.parse_args()


def main(args, device):
    model = AFB_URR(device, update_bank=True, load_imagenet_params=False)
    model = model.to(device)
    model.eval()

    downsample_size = 480

    if os.path.isfile(args.model_path):
        checkpoint = torch.load(args.model_path)
        end_epoch = checkpoint['epoch']
        model.load_state_dict(checkpoint['model'], strict=False)
        train_loss = checkpoint['loss']
        seed = checkpoint['seed']
        print(myutils.gct(),
              f'Loaded checkpoint {args.model_path}. (end_epoch: {end_epoch}, train_loss: {train_loss}, seed: {seed})')
    else:
        print(myutils.gct(), f'No checkpoint found at {args.model_path}')
        raise IOError

    img_list = sorted(glob(os.path.join(args.test_path, '*.jpg')) + glob(os.path.join(args.test_path, '*.png')))
    first_frame = myutils.load_image_in_PIL(img_list[0])
    first_name = os.path.basename(img_list[0])[:-4]

    out_dir = './output/segs'
    mask_dir = os.path.join(out_dir, args.test_name, 'mask')
    mask_path = os.path.join(mask_dir, first_name + '.png')
    if not os.path.exists(mask_path):
        image_model_path = './records/link_efficientb4_model.pth'
        test_waterseg(image_model_path, img_list[0], args.test_name, out_dir, device)

    first_mask = myutils.load_image_in_PIL(mask_path, 'P')
    seq_dataset = Video_DS(img_list, first_frame, first_mask)

    seq_loader = utils.data.DataLoader(seq_dataset, batch_size=1, shuffle=False, num_workers=1)

    seg_dir = os.path.join(out_dir, args.test_name, 'mask')
    os.makedirs(seg_dir, exist_ok=True)
    if args.viz:
        overlay_dir = os.path.join(out_dir, args.test_name, 'overlay')
        os.makedirs(overlay_dir, exist_ok=True)

    obj_n = seq_dataset.obj_n
    fb = FeatureBank(obj_n, args.budget, device, update_rate=args.update_rate, thres_close=args.merge_thres)

    ori_first_frame = seq_dataset.first_frame.unsqueeze(0).to(device)
    ori_first_mask = seq_dataset.first_mask.unsqueeze(0).to(device)

    first_frame = TF.resize(ori_first_frame, downsample_size, InterpolationMode.BICUBIC)
    first_mask = TF.resize(ori_first_mask, downsample_size, InterpolationMode.NEAREST)

    pred = torch.argmax(ori_first_mask[0], dim=0).cpu().numpy().astype(np.uint8)
    seg_path = os.path.join(seg_dir, f'{first_name}.png')
    myutils.save_seg_mask(pred, seg_path, myutils.color_palette)

    if args.viz:
        overlay_path = os.path.join(overlay_dir, f'{first_name}.png')
        myutils.save_overlay(ori_first_frame[0], pred, overlay_path, myutils.color_palette)

    with torch.no_grad():
        k4_list, v4_list = model.memorize(first_frame, first_mask)
        fb.init_bank(k4_list, v4_list)

        for idx, (frame, frame_name) in enumerate(tqdm(seq_loader)):

            ori_frame = frame.to(device)
            ori_size = ori_frame.shape[-2:]
            frame = TF.resize(ori_frame, downsample_size, InterpolationMode.BICUBIC)
            score, _ = model.segment(frame, fb)
            pred_mask = F.softmax(score, dim=1)

            k4_list, v4_list = model.memorize(frame, pred_mask)
            fb.update(k4_list, v4_list, idx + 1)

            pred = TF.resize(pred_mask, ori_size, InterpolationMode.BICUBIC)
            pred = torch.argmax(pred[0], dim=0).cpu().numpy().astype(np.uint8)
            pred = myutils.postprocessing_pred(pred)
            seg_path = os.path.join(seg_dir, f'{frame_name[0]}.png')
            myutils.save_seg_mask(pred, seg_path, myutils.color_palette)
            if args.viz:
                overlay_path = os.path.join(overlay_dir, f'{frame_name[0]}.png')
                myutils.save_overlay(ori_frame[0], pred, overlay_path, myutils.color_palette)

    fb.print_peak_mem()


if __name__ == '__main__':

    args = get_args()
    print(myutils.gct(), 'Args =', args)

    if args.gpu >= 0 and torch.cuda.is_available():
        device = torch.device('cuda', args.gpu)
    else:
        raise ValueError('CUDA is required. --gpu must be >= 0.')

    assert os.path.isdir(args.test_path)

    main(args, device)

    print(myutils.gct(), 'Test video segmentation done.')