File size: 3,270 Bytes
85fe96a
 
3abf421
 
85fe96a
28b340a
d4b5e81
b2a21d4
 
d4b5e81
1e280cc
3abf421
 
 
1e280cc
3abf421
 
bf031d5
ef79da9
 
41f1943
2afcdf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef79da9
 
b2a21d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef79da9
 
3abf421
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
language:
- en
---

<p align="center">
 <a href="https://rhymes.ai/" target="_blank"> Gallery</a><a href="https://github.com/rhymes-ai/Aria" target="_blank">GitHub</a><a href="https://www.rhymes.ai/blog-details/" target="_blank">Blog</a><a href="https://arxiv.org/pdf/2410.05993" target="_blank">Paper</a><a href="https://discord" target="_blank">Discord</a> 
 
</p> 

# Gallery
<img src="https://huggingface.co/rhymes-ai/Allegro/resolve/main/gallery.gif" width="1000" height="800"/>For more demos and corresponding prompts, see the [Allegro Gallery](TBD).


# Key Feature 
Allegro is capable of producing high-quality, 6-second videos at 30 frames per second and 720p resolution from simple text prompts.


# Model info 

<table>
  <tr>
    <th>Model</th>
    <td>Allegro</td>
  </tr>
  <tr>
    <th>Description</th>
    <td>Text-to-Video Diffusion Transformer</td>
  </tr>
  <tr>
    <th>Download</th>
    <td>&lt;HF link - TBD&gt;</td>
  </tr>
  <tr>
    <th rowspan="2">Parameter</th>
    <td>VAE: 175M</td>
  </tr>
  <tr>
    <td>DiT: 2.8B</td>
  </tr>
  <tr>
    <th rowspan="2">Inference Precision</th>
    <td>VAE: FP32/TF32/BF16/FP16 (best in FP32/TF32)</td>
  </tr>
  <tr>
    <td>DiT/T5: BF16/FP32/TF32</td>
  </tr>
  <tr>
    <th>Context Length</th>
    <td>79.2k</td>
  </tr>
  <tr>
    <th>Resolution</th>
    <td>720 x 1280</td>
  </tr>
  <tr>
    <th>Frames</th>
    <td>88</td>
  </tr>
  <tr>
    <th>Video Length</th>
    <td>6 seconds @ 15 fps</td>
  </tr>
  <tr>
    <th>Single GPU Memory Usage</th>
    <td>9.3G BF16 (with cpu_offload)</td>
  </tr>
</table>


# Quick start
You can quickly get started with Allegro using the Hugging Face Diffusers library.
For more tutorials, see Allegro GitHub (link-tbd).

Install necessary requirements:
```python
pip install diffusers transformers imageio
```
Inference on single gpu:
```python
from diffusers import DiffusionPipeline
import torch

allegro_pipeline = DiffusionPipeline.from_pretrained(
    "rhythms-ai/allegro", trust_remote_code=True, torch_dtype=torch.bfloat16
).to("cuda")

allegro_pipeline.vae = allegro_pipeline.vae.to(torch.float32)

prompt = "a video of an astronaut riding a horse on mars"

positive_prompt = """
(masterpiece), (best quality), (ultra-detailed), (unwatermarked), 
{} 
emotional, harmonious, vignette, 4k epic detailed, shot on kodak, 35mm photo, 
sharp focus, high budget, cinemascope, moody, epic, gorgeous
"""

negative_prompt = """
nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, 
low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry.
"""

num_sampling_steps, guidance_scale, seed = 100, 7.5, 42

user_prompt = positive_prompt.format(args.user_prompt.lower().strip())
out_video = allegro_pipeline(
    user_prompt, 
    negative_prompt=negative_prompt, 
    num_frames=88,
    height=720,
    width=1280,
    num_inference_steps=num_sampling_steps,
    guidance_scale=guidance_scale,
    max_sequence_length=512,
    generator = torch.Generator(device="cuda:0").manual_seed(seed)
).video[0]

imageio.mimwrite("test_video.mp4", out_video, fps=15, quality=8)

```

# License
This repo is released under the Apache 2.0 License.