|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
from dataclasses import dataclass |
|
from functools import partial |
|
from importlib import import_module |
|
from typing import Any, Callable, Dict, Optional, Tuple |
|
|
|
import numpy as np |
|
import torch |
|
import collections |
|
import torch.nn.functional as F |
|
from torch.nn.attention import SDPBackend, sdpa_kernel |
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU |
|
from diffusers.models.attention_processor import ( |
|
AttnAddedKVProcessor, |
|
AttnAddedKVProcessor2_0, |
|
AttnProcessor, |
|
CustomDiffusionAttnProcessor, |
|
CustomDiffusionAttnProcessor2_0, |
|
CustomDiffusionXFormersAttnProcessor, |
|
LoRAAttnAddedKVProcessor, |
|
LoRAAttnProcessor, |
|
LoRAAttnProcessor2_0, |
|
LoRAXFormersAttnProcessor, |
|
SlicedAttnAddedKVProcessor, |
|
SlicedAttnProcessor, |
|
SpatialNorm, |
|
XFormersAttnAddedKVProcessor, |
|
XFormersAttnProcessor, |
|
) |
|
from diffusers.models.embeddings import SinusoidalPositionalEmbedding, TimestepEmbedding, Timesteps |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormZero |
|
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_xformers_available |
|
from diffusers.utils.torch_utils import maybe_allow_in_graph |
|
from einops import rearrange, repeat |
|
from torch import nn |
|
from diffusers.models.embeddings import PixArtAlphaTextProjection |
|
|
|
|
|
if is_xformers_available(): |
|
import xformers |
|
import xformers.ops |
|
else: |
|
xformers = None |
|
|
|
from diffusers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def to_2tuple(x): |
|
if isinstance(x, collections.abc.Iterable): |
|
return x |
|
return (x, x) |
|
|
|
class CombinedTimestepSizeEmbeddings(nn.Module): |
|
""" |
|
For PixArt-Alpha. |
|
|
|
Reference: |
|
https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29 |
|
""" |
|
|
|
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False): |
|
super().__init__() |
|
|
|
self.outdim = size_emb_dim |
|
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) |
|
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) |
|
|
|
self.use_additional_conditions = use_additional_conditions |
|
if use_additional_conditions: |
|
self.use_additional_conditions = True |
|
self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) |
|
self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) |
|
self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) |
|
|
|
def apply_condition(self, size: torch.Tensor, batch_size: int, embedder: nn.Module): |
|
if size.ndim == 1: |
|
size = size[:, None] |
|
|
|
if size.shape[0] != batch_size: |
|
size = size.repeat(batch_size // size.shape[0], 1) |
|
if size.shape[0] != batch_size: |
|
raise ValueError(f"`batch_size` should be {size.shape[0]} but found {batch_size}.") |
|
|
|
current_batch_size, dims = size.shape[0], size.shape[1] |
|
size = size.reshape(-1) |
|
size_freq = self.additional_condition_proj(size).to(size.dtype) |
|
|
|
size_emb = embedder(size_freq) |
|
size_emb = size_emb.reshape(current_batch_size, dims * self.outdim) |
|
return size_emb |
|
|
|
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype): |
|
timesteps_proj = self.time_proj(timestep) |
|
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) |
|
|
|
if self.use_additional_conditions: |
|
resolution = self.apply_condition(resolution, batch_size=batch_size, embedder=self.resolution_embedder) |
|
aspect_ratio = self.apply_condition( |
|
aspect_ratio, batch_size=batch_size, embedder=self.aspect_ratio_embedder |
|
) |
|
conditioning = timesteps_emb + torch.cat([resolution, aspect_ratio], dim=1) |
|
else: |
|
conditioning = timesteps_emb |
|
|
|
return conditioning |
|
|
|
|
|
class PositionGetter3D(object): |
|
""" return positions of patches """ |
|
|
|
def __init__(self, ): |
|
self.cache_positions = {} |
|
|
|
def __call__(self, b, t, h, w, device): |
|
if not (b, t,h,w) in self.cache_positions: |
|
x = torch.arange(w, device=device) |
|
y = torch.arange(h, device=device) |
|
z = torch.arange(t, device=device) |
|
pos = torch.cartesian_prod(z, y, x) |
|
|
|
pos = pos.reshape(t * h * w, 3).transpose(0, 1).reshape(3, 1, -1).contiguous().expand(3, b, -1).clone() |
|
poses = (pos[0].contiguous(), pos[1].contiguous(), pos[2].contiguous()) |
|
max_poses = (int(poses[0].max()), int(poses[1].max()), int(poses[2].max())) |
|
|
|
self.cache_positions[b, t, h, w] = (poses, max_poses) |
|
pos = self.cache_positions[b, t, h, w] |
|
|
|
return pos |
|
|
|
|
|
class RoPE3D(torch.nn.Module): |
|
|
|
def __init__(self, freq=10000.0, F0=1.0, interpolation_scale_thw=(1, 1, 1)): |
|
super().__init__() |
|
self.base = freq |
|
self.F0 = F0 |
|
self.interpolation_scale_t = interpolation_scale_thw[0] |
|
self.interpolation_scale_h = interpolation_scale_thw[1] |
|
self.interpolation_scale_w = interpolation_scale_thw[2] |
|
self.cache = {} |
|
|
|
def get_cos_sin(self, D, seq_len, device, dtype, interpolation_scale=1): |
|
if (D, seq_len, device, dtype) not in self.cache: |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D)) |
|
t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype) / interpolation_scale |
|
freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype) |
|
freqs = torch.cat((freqs, freqs), dim=-1) |
|
cos = freqs.cos() |
|
sin = freqs.sin() |
|
self.cache[D, seq_len, device, dtype] = (cos, sin) |
|
return self.cache[D, seq_len, device, dtype] |
|
|
|
@staticmethod |
|
def rotate_half(x): |
|
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2:] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
def apply_rope1d(self, tokens, pos1d, cos, sin): |
|
assert pos1d.ndim == 2 |
|
|
|
|
|
cos = torch.nn.functional.embedding(pos1d, cos)[:, None, :, :] |
|
sin = torch.nn.functional.embedding(pos1d, sin)[:, None, :, :] |
|
return (tokens * cos) + (self.rotate_half(tokens) * sin) |
|
|
|
def forward(self, tokens, positions): |
|
""" |
|
input: |
|
* tokens: batch_size x nheads x ntokens x dim |
|
* positions: batch_size x ntokens x 3 (t, y and x position of each token) |
|
output: |
|
* tokens after appplying RoPE3D (batch_size x nheads x ntokens x x dim) |
|
""" |
|
assert tokens.size(3) % 3 == 0, "number of dimensions should be a multiple of three" |
|
D = tokens.size(3) // 3 |
|
poses, max_poses = positions |
|
assert len(poses) == 3 and poses[0].ndim == 2 |
|
cos_t, sin_t = self.get_cos_sin(D, max_poses[0] + 1, tokens.device, tokens.dtype, self.interpolation_scale_t) |
|
cos_y, sin_y = self.get_cos_sin(D, max_poses[1] + 1, tokens.device, tokens.dtype, self.interpolation_scale_h) |
|
cos_x, sin_x = self.get_cos_sin(D, max_poses[2] + 1, tokens.device, tokens.dtype, self.interpolation_scale_w) |
|
|
|
t, y, x = tokens.chunk(3, dim=-1) |
|
t = self.apply_rope1d(t, poses[0], cos_t, sin_t) |
|
y = self.apply_rope1d(y, poses[1], cos_y, sin_y) |
|
x = self.apply_rope1d(x, poses[2], cos_x, sin_x) |
|
tokens = torch.cat((t, y, x), dim=-1) |
|
return tokens |
|
|
|
class PatchEmbed2D(nn.Module): |
|
"""2D Image to Patch Embedding""" |
|
|
|
def __init__( |
|
self, |
|
num_frames=1, |
|
height=224, |
|
width=224, |
|
patch_size_t=1, |
|
patch_size=16, |
|
in_channels=3, |
|
embed_dim=768, |
|
layer_norm=False, |
|
flatten=True, |
|
bias=True, |
|
interpolation_scale=(1, 1), |
|
interpolation_scale_t=1, |
|
use_abs_pos=False, |
|
): |
|
super().__init__() |
|
self.use_abs_pos = use_abs_pos |
|
self.flatten = flatten |
|
self.layer_norm = layer_norm |
|
|
|
self.proj = nn.Conv2d( |
|
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=(patch_size, patch_size), bias=bias |
|
) |
|
if layer_norm: |
|
self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6) |
|
else: |
|
self.norm = None |
|
|
|
self.patch_size_t = patch_size_t |
|
self.patch_size = patch_size |
|
|
|
def forward(self, latent): |
|
b, _, _, _, _ = latent.shape |
|
video_latent = None |
|
|
|
latent = rearrange(latent, 'b c t h w -> (b t) c h w') |
|
|
|
latent = self.proj(latent) |
|
if self.flatten: |
|
latent = latent.flatten(2).transpose(1, 2) |
|
if self.layer_norm: |
|
latent = self.norm(latent) |
|
|
|
latent = rearrange(latent, '(b t) n c -> b (t n) c', b=b) |
|
video_latent = latent |
|
|
|
return video_latent |
|
|
|
|
|
@maybe_allow_in_graph |
|
class Attention(nn.Module): |
|
r""" |
|
A cross attention layer. |
|
|
|
Parameters: |
|
query_dim (`int`): |
|
The number of channels in the query. |
|
cross_attention_dim (`int`, *optional*): |
|
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. |
|
heads (`int`, *optional*, defaults to 8): |
|
The number of heads to use for multi-head attention. |
|
dim_head (`int`, *optional*, defaults to 64): |
|
The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): |
|
The dropout probability to use. |
|
bias (`bool`, *optional*, defaults to False): |
|
Set to `True` for the query, key, and value linear layers to contain a bias parameter. |
|
upcast_attention (`bool`, *optional*, defaults to False): |
|
Set to `True` to upcast the attention computation to `float32`. |
|
upcast_softmax (`bool`, *optional*, defaults to False): |
|
Set to `True` to upcast the softmax computation to `float32`. |
|
cross_attention_norm (`str`, *optional*, defaults to `None`): |
|
The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. |
|
cross_attention_norm_num_groups (`int`, *optional*, defaults to 32): |
|
The number of groups to use for the group norm in the cross attention. |
|
added_kv_proj_dim (`int`, *optional*, defaults to `None`): |
|
The number of channels to use for the added key and value projections. If `None`, no projection is used. |
|
norm_num_groups (`int`, *optional*, defaults to `None`): |
|
The number of groups to use for the group norm in the attention. |
|
spatial_norm_dim (`int`, *optional*, defaults to `None`): |
|
The number of channels to use for the spatial normalization. |
|
out_bias (`bool`, *optional*, defaults to `True`): |
|
Set to `True` to use a bias in the output linear layer. |
|
scale_qk (`bool`, *optional*, defaults to `True`): |
|
Set to `True` to scale the query and key by `1 / sqrt(dim_head)`. |
|
only_cross_attention (`bool`, *optional*, defaults to `False`): |
|
Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if |
|
`added_kv_proj_dim` is not `None`. |
|
eps (`float`, *optional*, defaults to 1e-5): |
|
An additional value added to the denominator in group normalization that is used for numerical stability. |
|
rescale_output_factor (`float`, *optional*, defaults to 1.0): |
|
A factor to rescale the output by dividing it with this value. |
|
residual_connection (`bool`, *optional*, defaults to `False`): |
|
Set to `True` to add the residual connection to the output. |
|
_from_deprecated_attn_block (`bool`, *optional*, defaults to `False`): |
|
Set to `True` if the attention block is loaded from a deprecated state dict. |
|
processor (`AttnProcessor`, *optional*, defaults to `None`): |
|
The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and |
|
`AttnProcessor` otherwise. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
query_dim: int, |
|
cross_attention_dim: Optional[int] = None, |
|
heads: int = 8, |
|
dim_head: int = 64, |
|
dropout: float = 0.0, |
|
bias: bool = False, |
|
upcast_attention: bool = False, |
|
upcast_softmax: bool = False, |
|
cross_attention_norm: Optional[str] = None, |
|
cross_attention_norm_num_groups: int = 32, |
|
added_kv_proj_dim: Optional[int] = None, |
|
norm_num_groups: Optional[int] = None, |
|
spatial_norm_dim: Optional[int] = None, |
|
out_bias: bool = True, |
|
scale_qk: bool = True, |
|
only_cross_attention: bool = False, |
|
eps: float = 1e-5, |
|
rescale_output_factor: float = 1.0, |
|
residual_connection: bool = False, |
|
_from_deprecated_attn_block: bool = False, |
|
processor: Optional["AttnProcessor"] = None, |
|
attention_mode: str = "xformers", |
|
use_rope: bool = False, |
|
interpolation_scale_thw=None, |
|
): |
|
super().__init__() |
|
self.inner_dim = dim_head * heads |
|
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim |
|
self.upcast_attention = upcast_attention |
|
self.upcast_softmax = upcast_softmax |
|
self.rescale_output_factor = rescale_output_factor |
|
self.residual_connection = residual_connection |
|
self.dropout = dropout |
|
self.use_rope = use_rope |
|
|
|
|
|
|
|
self._from_deprecated_attn_block = _from_deprecated_attn_block |
|
|
|
self.scale_qk = scale_qk |
|
self.scale = dim_head**-0.5 if self.scale_qk else 1.0 |
|
|
|
self.heads = heads |
|
|
|
|
|
|
|
self.sliceable_head_dim = heads |
|
|
|
self.added_kv_proj_dim = added_kv_proj_dim |
|
self.only_cross_attention = only_cross_attention |
|
|
|
if self.added_kv_proj_dim is None and self.only_cross_attention: |
|
raise ValueError( |
|
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." |
|
) |
|
|
|
if norm_num_groups is not None: |
|
self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True) |
|
else: |
|
self.group_norm = None |
|
|
|
if spatial_norm_dim is not None: |
|
self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim) |
|
else: |
|
self.spatial_norm = None |
|
|
|
if cross_attention_norm is None: |
|
self.norm_cross = None |
|
elif cross_attention_norm == "layer_norm": |
|
self.norm_cross = nn.LayerNorm(self.cross_attention_dim) |
|
elif cross_attention_norm == "group_norm": |
|
if self.added_kv_proj_dim is not None: |
|
|
|
|
|
|
|
|
|
|
|
norm_cross_num_channels = added_kv_proj_dim |
|
else: |
|
norm_cross_num_channels = self.cross_attention_dim |
|
|
|
self.norm_cross = nn.GroupNorm( |
|
num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True |
|
) |
|
else: |
|
raise ValueError( |
|
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" |
|
) |
|
|
|
linear_cls = nn.Linear |
|
|
|
|
|
self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias) |
|
|
|
if not self.only_cross_attention: |
|
|
|
self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) |
|
self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) |
|
else: |
|
self.to_k = None |
|
self.to_v = None |
|
|
|
if self.added_kv_proj_dim is not None: |
|
self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim) |
|
self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim) |
|
|
|
self.to_out = nn.ModuleList([]) |
|
self.to_out.append(linear_cls(self.inner_dim, query_dim, bias=out_bias)) |
|
self.to_out.append(nn.Dropout(dropout)) |
|
|
|
|
|
|
|
|
|
|
|
if processor is None: |
|
processor = ( |
|
AttnProcessor2_0( |
|
attention_mode, |
|
use_rope, |
|
interpolation_scale_thw=interpolation_scale_thw, |
|
) |
|
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk |
|
else AttnProcessor() |
|
) |
|
self.set_processor(processor) |
|
|
|
def set_use_memory_efficient_attention_xformers( |
|
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None |
|
) -> None: |
|
r""" |
|
Set whether to use memory efficient attention from `xformers` or not. |
|
|
|
Args: |
|
use_memory_efficient_attention_xformers (`bool`): |
|
Whether to use memory efficient attention from `xformers` or not. |
|
attention_op (`Callable`, *optional*): |
|
The attention operation to use. Defaults to `None` which uses the default attention operation from |
|
`xformers`. |
|
""" |
|
is_lora = hasattr(self, "processor") |
|
is_custom_diffusion = hasattr(self, "processor") and isinstance( |
|
self.processor, |
|
(CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0), |
|
) |
|
is_added_kv_processor = hasattr(self, "processor") and isinstance( |
|
self.processor, |
|
( |
|
AttnAddedKVProcessor, |
|
AttnAddedKVProcessor2_0, |
|
SlicedAttnAddedKVProcessor, |
|
XFormersAttnAddedKVProcessor, |
|
LoRAAttnAddedKVProcessor, |
|
), |
|
) |
|
|
|
if use_memory_efficient_attention_xformers: |
|
if is_added_kv_processor and (is_lora or is_custom_diffusion): |
|
raise NotImplementedError( |
|
f"Memory efficient attention is currently not supported for LoRA or custom diffusion for attention processor type {self.processor}" |
|
) |
|
if not is_xformers_available(): |
|
raise ModuleNotFoundError( |
|
( |
|
"Refer to https://github.com/facebookresearch/xformers for more information on how to install" |
|
" xformers" |
|
), |
|
name="xformers", |
|
) |
|
elif not torch.cuda.is_available(): |
|
raise ValueError( |
|
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is" |
|
" only available for GPU " |
|
) |
|
else: |
|
try: |
|
|
|
_ = xformers.ops.memory_efficient_attention( |
|
torch.randn((1, 2, 40), device="cuda"), |
|
torch.randn((1, 2, 40), device="cuda"), |
|
torch.randn((1, 2, 40), device="cuda"), |
|
) |
|
except Exception as e: |
|
raise e |
|
|
|
if is_lora: |
|
|
|
|
|
processor = LoRAXFormersAttnProcessor( |
|
hidden_size=self.processor.hidden_size, |
|
cross_attention_dim=self.processor.cross_attention_dim, |
|
rank=self.processor.rank, |
|
attention_op=attention_op, |
|
) |
|
processor.load_state_dict(self.processor.state_dict()) |
|
processor.to(self.processor.to_q_lora.up.weight.device) |
|
elif is_custom_diffusion: |
|
processor = CustomDiffusionXFormersAttnProcessor( |
|
train_kv=self.processor.train_kv, |
|
train_q_out=self.processor.train_q_out, |
|
hidden_size=self.processor.hidden_size, |
|
cross_attention_dim=self.processor.cross_attention_dim, |
|
attention_op=attention_op, |
|
) |
|
processor.load_state_dict(self.processor.state_dict()) |
|
if hasattr(self.processor, "to_k_custom_diffusion"): |
|
processor.to(self.processor.to_k_custom_diffusion.weight.device) |
|
elif is_added_kv_processor: |
|
|
|
|
|
|
|
|
|
logger.info( |
|
"Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation." |
|
) |
|
processor = XFormersAttnAddedKVProcessor(attention_op=attention_op) |
|
else: |
|
processor = XFormersAttnProcessor(attention_op=attention_op) |
|
else: |
|
if is_lora: |
|
attn_processor_class = ( |
|
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor |
|
) |
|
processor = attn_processor_class( |
|
hidden_size=self.processor.hidden_size, |
|
cross_attention_dim=self.processor.cross_attention_dim, |
|
rank=self.processor.rank, |
|
) |
|
processor.load_state_dict(self.processor.state_dict()) |
|
processor.to(self.processor.to_q_lora.up.weight.device) |
|
elif is_custom_diffusion: |
|
attn_processor_class = ( |
|
CustomDiffusionAttnProcessor2_0 |
|
if hasattr(F, "scaled_dot_product_attention") |
|
else CustomDiffusionAttnProcessor |
|
) |
|
processor = attn_processor_class( |
|
train_kv=self.processor.train_kv, |
|
train_q_out=self.processor.train_q_out, |
|
hidden_size=self.processor.hidden_size, |
|
cross_attention_dim=self.processor.cross_attention_dim, |
|
) |
|
processor.load_state_dict(self.processor.state_dict()) |
|
if hasattr(self.processor, "to_k_custom_diffusion"): |
|
processor.to(self.processor.to_k_custom_diffusion.weight.device) |
|
else: |
|
|
|
|
|
|
|
|
|
processor = ( |
|
AttnProcessor2_0() |
|
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk |
|
else AttnProcessor() |
|
) |
|
|
|
self.set_processor(processor) |
|
|
|
def set_attention_slice(self, slice_size: int) -> None: |
|
r""" |
|
Set the slice size for attention computation. |
|
|
|
Args: |
|
slice_size (`int`): |
|
The slice size for attention computation. |
|
""" |
|
if slice_size is not None and slice_size > self.sliceable_head_dim: |
|
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") |
|
|
|
if slice_size is not None and self.added_kv_proj_dim is not None: |
|
processor = SlicedAttnAddedKVProcessor(slice_size) |
|
elif slice_size is not None: |
|
processor = SlicedAttnProcessor(slice_size) |
|
elif self.added_kv_proj_dim is not None: |
|
processor = AttnAddedKVProcessor() |
|
else: |
|
|
|
|
|
|
|
|
|
processor = ( |
|
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() |
|
) |
|
|
|
self.set_processor(processor) |
|
|
|
def set_processor(self, processor: "AttnProcessor", _remove_lora: bool = False) -> None: |
|
r""" |
|
Set the attention processor to use. |
|
|
|
Args: |
|
processor (`AttnProcessor`): |
|
The attention processor to use. |
|
_remove_lora (`bool`, *optional*, defaults to `False`): |
|
Set to `True` to remove LoRA layers from the model. |
|
""" |
|
if not USE_PEFT_BACKEND and hasattr(self, "processor") and _remove_lora and self.to_q.lora_layer is not None: |
|
deprecate( |
|
"set_processor to offload LoRA", |
|
"0.26.0", |
|
"In detail, removing LoRA layers via calling `set_default_attn_processor` is deprecated. Please make sure to call `pipe.unload_lora_weights()` instead.", |
|
) |
|
|
|
|
|
|
|
for module in self.modules(): |
|
if hasattr(module, "set_lora_layer"): |
|
module.set_lora_layer(None) |
|
|
|
|
|
|
|
if ( |
|
hasattr(self, "processor") |
|
and isinstance(self.processor, torch.nn.Module) |
|
and not isinstance(processor, torch.nn.Module) |
|
): |
|
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}") |
|
self._modules.pop("processor") |
|
|
|
self.processor = processor |
|
|
|
def get_processor(self, return_deprecated_lora: bool = False): |
|
r""" |
|
Get the attention processor in use. |
|
|
|
Args: |
|
return_deprecated_lora (`bool`, *optional*, defaults to `False`): |
|
Set to `True` to return the deprecated LoRA attention processor. |
|
|
|
Returns: |
|
"AttentionProcessor": The attention processor in use. |
|
""" |
|
if not return_deprecated_lora: |
|
return self.processor |
|
|
|
|
|
|
|
|
|
is_lora_activated = { |
|
name: module.lora_layer is not None |
|
for name, module in self.named_modules() |
|
if hasattr(module, "lora_layer") |
|
} |
|
|
|
|
|
if not any(is_lora_activated.values()): |
|
return self.processor |
|
|
|
|
|
is_lora_activated.pop("add_k_proj", None) |
|
is_lora_activated.pop("add_v_proj", None) |
|
|
|
if not all(is_lora_activated.values()): |
|
raise ValueError( |
|
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}" |
|
) |
|
|
|
|
|
non_lora_processor_cls_name = self.processor.__class__.__name__ |
|
lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name) |
|
|
|
hidden_size = self.inner_dim |
|
|
|
|
|
if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]: |
|
kwargs = { |
|
"cross_attention_dim": self.cross_attention_dim, |
|
"rank": self.to_q.lora_layer.rank, |
|
"network_alpha": self.to_q.lora_layer.network_alpha, |
|
"q_rank": self.to_q.lora_layer.rank, |
|
"q_hidden_size": self.to_q.lora_layer.out_features, |
|
"k_rank": self.to_k.lora_layer.rank, |
|
"k_hidden_size": self.to_k.lora_layer.out_features, |
|
"v_rank": self.to_v.lora_layer.rank, |
|
"v_hidden_size": self.to_v.lora_layer.out_features, |
|
"out_rank": self.to_out[0].lora_layer.rank, |
|
"out_hidden_size": self.to_out[0].lora_layer.out_features, |
|
} |
|
|
|
if hasattr(self.processor, "attention_op"): |
|
kwargs["attention_op"] = self.processor.attention_op |
|
|
|
lora_processor = lora_processor_cls(hidden_size, **kwargs) |
|
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) |
|
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) |
|
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) |
|
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) |
|
elif lora_processor_cls == LoRAAttnAddedKVProcessor: |
|
lora_processor = lora_processor_cls( |
|
hidden_size, |
|
cross_attention_dim=self.add_k_proj.weight.shape[0], |
|
rank=self.to_q.lora_layer.rank, |
|
network_alpha=self.to_q.lora_layer.network_alpha, |
|
) |
|
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) |
|
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) |
|
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) |
|
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) |
|
|
|
|
|
if self.add_k_proj.lora_layer is not None: |
|
lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict()) |
|
lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict()) |
|
else: |
|
lora_processor.add_k_proj_lora = None |
|
lora_processor.add_v_proj_lora = None |
|
else: |
|
raise ValueError(f"{lora_processor_cls} does not exist.") |
|
|
|
return lora_processor |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
**cross_attention_kwargs, |
|
) -> torch.Tensor: |
|
r""" |
|
The forward method of the `Attention` class. |
|
|
|
Args: |
|
hidden_states (`torch.Tensor`): |
|
The hidden states of the query. |
|
encoder_hidden_states (`torch.Tensor`, *optional*): |
|
The hidden states of the encoder. |
|
attention_mask (`torch.Tensor`, *optional*): |
|
The attention mask to use. If `None`, no mask is applied. |
|
**cross_attention_kwargs: |
|
Additional keyword arguments to pass along to the cross attention. |
|
|
|
Returns: |
|
`torch.Tensor`: The output of the attention layer. |
|
""" |
|
|
|
|
|
|
|
return self.processor( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor: |
|
r""" |
|
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads` |
|
is the number of heads initialized while constructing the `Attention` class. |
|
|
|
Args: |
|
tensor (`torch.Tensor`): The tensor to reshape. |
|
|
|
Returns: |
|
`torch.Tensor`: The reshaped tensor. |
|
""" |
|
head_size = self.heads |
|
batch_size, seq_len, dim = tensor.shape |
|
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) |
|
return tensor |
|
|
|
def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor: |
|
r""" |
|
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is |
|
the number of heads initialized while constructing the `Attention` class. |
|
|
|
Args: |
|
tensor (`torch.Tensor`): The tensor to reshape. |
|
out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is |
|
reshaped to `[batch_size * heads, seq_len, dim // heads]`. |
|
|
|
Returns: |
|
`torch.Tensor`: The reshaped tensor. |
|
""" |
|
head_size = self.heads |
|
batch_size, seq_len, dim = tensor.shape |
|
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) |
|
tensor = tensor.permute(0, 2, 1, 3) |
|
|
|
if out_dim == 3: |
|
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) |
|
|
|
return tensor |
|
|
|
def get_attention_scores( |
|
self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None |
|
) -> torch.Tensor: |
|
r""" |
|
Compute the attention scores. |
|
|
|
Args: |
|
query (`torch.Tensor`): The query tensor. |
|
key (`torch.Tensor`): The key tensor. |
|
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. |
|
|
|
Returns: |
|
`torch.Tensor`: The attention probabilities/scores. |
|
""" |
|
dtype = query.dtype |
|
if self.upcast_attention: |
|
query = query.float() |
|
key = key.float() |
|
|
|
if attention_mask is None: |
|
baddbmm_input = torch.empty( |
|
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device |
|
) |
|
beta = 0 |
|
else: |
|
baddbmm_input = attention_mask |
|
beta = 1 |
|
|
|
attention_scores = torch.baddbmm( |
|
baddbmm_input, |
|
query, |
|
key.transpose(-1, -2), |
|
beta=beta, |
|
alpha=self.scale, |
|
) |
|
del baddbmm_input |
|
|
|
if self.upcast_softmax: |
|
attention_scores = attention_scores.float() |
|
|
|
attention_probs = attention_scores.softmax(dim=-1) |
|
del attention_scores |
|
|
|
attention_probs = attention_probs.to(dtype) |
|
|
|
return attention_probs |
|
|
|
def prepare_attention_mask( |
|
self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3, head_size = None, |
|
) -> torch.Tensor: |
|
r""" |
|
Prepare the attention mask for the attention computation. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
The attention mask to prepare. |
|
target_length (`int`): |
|
The target length of the attention mask. This is the length of the attention mask after padding. |
|
batch_size (`int`): |
|
The batch size, which is used to repeat the attention mask. |
|
out_dim (`int`, *optional*, defaults to `3`): |
|
The output dimension of the attention mask. Can be either `3` or `4`. |
|
|
|
Returns: |
|
`torch.Tensor`: The prepared attention mask. |
|
""" |
|
head_size = head_size if head_size is not None else self.heads |
|
if attention_mask is None: |
|
return attention_mask |
|
|
|
current_length: int = attention_mask.shape[-1] |
|
if current_length != target_length: |
|
if attention_mask.device.type == "mps": |
|
|
|
|
|
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length) |
|
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device) |
|
attention_mask = torch.cat([attention_mask, padding], dim=2) |
|
else: |
|
|
|
|
|
|
|
|
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) |
|
|
|
if out_dim == 3: |
|
if attention_mask.shape[0] < batch_size * head_size: |
|
attention_mask = attention_mask.repeat_interleave(head_size, dim=0) |
|
elif out_dim == 4: |
|
attention_mask = attention_mask.unsqueeze(1) |
|
attention_mask = attention_mask.repeat_interleave(head_size, dim=1) |
|
|
|
return attention_mask |
|
|
|
def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: |
|
r""" |
|
Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the |
|
`Attention` class. |
|
|
|
Args: |
|
encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder. |
|
|
|
Returns: |
|
`torch.Tensor`: The normalized encoder hidden states. |
|
""" |
|
assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states" |
|
|
|
if isinstance(self.norm_cross, nn.LayerNorm): |
|
encoder_hidden_states = self.norm_cross(encoder_hidden_states) |
|
elif isinstance(self.norm_cross, nn.GroupNorm): |
|
|
|
|
|
|
|
|
|
|
|
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) |
|
encoder_hidden_states = self.norm_cross(encoder_hidden_states) |
|
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) |
|
else: |
|
assert False |
|
|
|
return encoder_hidden_states |
|
|
|
def _init_compress(self): |
|
self.sr.bias.data.zero_() |
|
self.norm = nn.LayerNorm(self.inner_dim) |
|
|
|
|
|
class AttnProcessor2_0(nn.Module): |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self, attention_mode="xformers", use_rope=False, interpolation_scale_thw=None): |
|
super().__init__() |
|
self.attention_mode = attention_mode |
|
self.use_rope = use_rope |
|
self.interpolation_scale_thw = interpolation_scale_thw |
|
|
|
if self.use_rope: |
|
self._init_rope(interpolation_scale_thw) |
|
|
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
def _init_rope(self, interpolation_scale_thw): |
|
self.rope = RoPE3D(interpolation_scale_thw=interpolation_scale_thw) |
|
self.position_getter = PositionGetter3D() |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
temb: Optional[torch.FloatTensor] = None, |
|
frame: int = 8, |
|
height: int = 16, |
|
width: int = 16, |
|
) -> torch.FloatTensor: |
|
|
|
residual = hidden_states |
|
|
|
if attn.spatial_norm is not None: |
|
hidden_states = attn.spatial_norm(hidden_states, temb) |
|
|
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
|
|
batch_size, sequence_length, _ = ( |
|
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
) |
|
|
|
if attention_mask is not None and self.attention_mode == 'xformers': |
|
attention_heads = attn.heads |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, head_size=attention_heads) |
|
attention_mask = attention_mask.view(batch_size, attention_heads, -1, attention_mask.shape[-1]) |
|
else: |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
|
|
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) |
|
|
|
if attn.group_norm is not None: |
|
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
elif attn.norm_cross: |
|
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
|
|
|
|
attn_heads = attn.heads |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn_heads |
|
|
|
query = query.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn_heads, head_dim).transpose(1, 2) |
|
|
|
|
|
if self.use_rope: |
|
|
|
pos_thw = self.position_getter(batch_size, t=frame, h=height, w=width, device=query.device) |
|
query = self.rope(query, pos_thw) |
|
key = self.rope(key, pos_thw) |
|
|
|
|
|
|
|
if self.attention_mode == 'flash': |
|
|
|
with sdpa_kernel(SDPBackend.FLASH_ATTENTION): |
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, dropout_p=0.0, is_causal=False |
|
) |
|
elif self.attention_mode == 'xformers': |
|
with sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION): |
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False |
|
) |
|
|
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn_heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
if attn.residual_connection: |
|
hidden_states = hidden_states + residual |
|
|
|
hidden_states = hidden_states / attn.rescale_output_factor |
|
|
|
return hidden_states |
|
|
|
class FeedForward(nn.Module): |
|
r""" |
|
A feed-forward layer. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input. |
|
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. |
|
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: Optional[int] = None, |
|
mult: int = 4, |
|
dropout: float = 0.0, |
|
activation_fn: str = "geglu", |
|
final_dropout: bool = False, |
|
): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = dim_out if dim_out is not None else dim |
|
linear_cls = nn.Linear |
|
|
|
if activation_fn == "gelu": |
|
act_fn = GELU(dim, inner_dim) |
|
if activation_fn == "gelu-approximate": |
|
act_fn = GELU(dim, inner_dim, approximate="tanh") |
|
elif activation_fn == "geglu": |
|
act_fn = GEGLU(dim, inner_dim) |
|
elif activation_fn == "geglu-approximate": |
|
act_fn = ApproximateGELU(dim, inner_dim) |
|
|
|
self.net = nn.ModuleList([]) |
|
|
|
self.net.append(act_fn) |
|
|
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
self.net.append(linear_cls(inner_dim, dim_out)) |
|
|
|
if final_dropout: |
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
for module in self.net: |
|
hidden_states = module(hidden_states) |
|
return hidden_states |
|
|
|
|
|
@maybe_allow_in_graph |
|
class BasicTransformerBlock(nn.Module): |
|
r""" |
|
A basic Transformer block. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input and output. |
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm (: |
|
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. |
|
attention_bias (: |
|
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. |
|
only_cross_attention (`bool`, *optional*): |
|
Whether to use only cross-attention layers. In this case two cross attention layers are used. |
|
double_self_attention (`bool`, *optional*): |
|
Whether to use two self-attention layers. In this case no cross attention layers are used. |
|
upcast_attention (`bool`, *optional*): |
|
Whether to upcast the attention computation to float32. This is useful for mixed precision training. |
|
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): |
|
Whether to use learnable elementwise affine parameters for normalization. |
|
norm_type (`str`, *optional*, defaults to `"layer_norm"`): |
|
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. |
|
final_dropout (`bool` *optional*, defaults to False): |
|
Whether to apply a final dropout after the last feed-forward layer. |
|
positional_embeddings (`str`, *optional*, defaults to `None`): |
|
The type of positional embeddings to apply to. |
|
num_positional_embeddings (`int`, *optional*, defaults to `None`): |
|
The maximum number of positional embeddings to apply. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_elementwise_affine: bool = True, |
|
norm_type: str = "layer_norm", |
|
norm_eps: float = 1e-5, |
|
final_dropout: bool = False, |
|
positional_embeddings: Optional[str] = None, |
|
num_positional_embeddings: Optional[int] = None, |
|
sa_attention_mode: str = "flash", |
|
ca_attention_mode: str = "xformers", |
|
use_rope: bool = False, |
|
interpolation_scale_thw: Tuple[int] = (1, 1, 1), |
|
block_idx: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.only_cross_attention = only_cross_attention |
|
|
|
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" |
|
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" |
|
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" |
|
self.use_layer_norm = norm_type == "layer_norm" |
|
|
|
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: |
|
raise ValueError( |
|
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" |
|
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." |
|
) |
|
|
|
if positional_embeddings and (num_positional_embeddings is None): |
|
raise ValueError( |
|
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." |
|
) |
|
|
|
if positional_embeddings == "sinusoidal": |
|
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) |
|
else: |
|
self.pos_embed = None |
|
|
|
|
|
|
|
if self.use_ada_layer_norm: |
|
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) |
|
elif self.use_ada_layer_norm_zero: |
|
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) |
|
else: |
|
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) |
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=cross_attention_dim if only_cross_attention else None, |
|
upcast_attention=upcast_attention, |
|
attention_mode=sa_attention_mode, |
|
use_rope=use_rope, |
|
interpolation_scale_thw=interpolation_scale_thw, |
|
) |
|
|
|
|
|
if cross_attention_dim is not None or double_self_attention: |
|
|
|
|
|
|
|
self.norm2 = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) |
|
) |
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim if not double_self_attention else None, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
attention_mode=ca_attention_mode, |
|
use_rope=False, |
|
interpolation_scale_thw=interpolation_scale_thw, |
|
) |
|
else: |
|
self.norm2 = None |
|
self.attn2 = None |
|
|
|
|
|
|
|
if not self.use_ada_layer_norm_single: |
|
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) |
|
|
|
self.ff = FeedForward( |
|
dim, |
|
dropout=dropout, |
|
activation_fn=activation_fn, |
|
final_dropout=final_dropout, |
|
) |
|
|
|
|
|
if self.use_ada_layer_norm_single: |
|
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
frame: int = None, |
|
height: int = None, |
|
width: int = None, |
|
) -> torch.FloatTensor: |
|
|
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} |
|
|
|
|
|
batch_size = hidden_states.shape[0] |
|
|
|
if self.use_ada_layer_norm: |
|
norm_hidden_states = self.norm1(hidden_states, timestep) |
|
elif self.use_ada_layer_norm_zero: |
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( |
|
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
) |
|
elif self.use_layer_norm: |
|
norm_hidden_states = self.norm1(hidden_states) |
|
elif self.use_ada_layer_norm_single: |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( |
|
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) |
|
).chunk(6, dim=1) |
|
norm_hidden_states = self.norm1(hidden_states) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa |
|
norm_hidden_states = norm_hidden_states.squeeze(1) |
|
else: |
|
raise ValueError("Incorrect norm used") |
|
|
|
if self.pos_embed is not None: |
|
norm_hidden_states = self.pos_embed(norm_hidden_states) |
|
|
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, |
|
attention_mask=attention_mask, |
|
frame=frame, |
|
height=height, |
|
width=width, |
|
**cross_attention_kwargs, |
|
) |
|
if self.use_ada_layer_norm_zero: |
|
attn_output = gate_msa.unsqueeze(1) * attn_output |
|
elif self.use_ada_layer_norm_single: |
|
attn_output = gate_msa * attn_output |
|
|
|
hidden_states = attn_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
|
|
if self.attn2 is not None: |
|
|
|
if self.use_ada_layer_norm: |
|
norm_hidden_states = self.norm2(hidden_states, timestep) |
|
elif self.use_ada_layer_norm_zero or self.use_layer_norm: |
|
norm_hidden_states = self.norm2(hidden_states) |
|
elif self.use_ada_layer_norm_single: |
|
|
|
|
|
norm_hidden_states = hidden_states |
|
else: |
|
raise ValueError("Incorrect norm") |
|
|
|
if self.pos_embed is not None and self.use_ada_layer_norm_single is False: |
|
norm_hidden_states = self.pos_embed(norm_hidden_states) |
|
|
|
attn_output = self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
|
|
if not self.use_ada_layer_norm_single: |
|
norm_hidden_states = self.norm3(hidden_states) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] |
|
|
|
if self.use_ada_layer_norm_single: |
|
norm_hidden_states = self.norm2(hidden_states) |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp |
|
|
|
ff_output = self.ff(norm_hidden_states) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
ff_output = gate_mlp.unsqueeze(1) * ff_output |
|
elif self.use_ada_layer_norm_single: |
|
ff_output = gate_mlp * ff_output |
|
|
|
|
|
hidden_states = ff_output + hidden_states |
|
if hidden_states.ndim == 4: |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
return hidden_states |
|
|
|
|
|
class AdaLayerNormSingle(nn.Module): |
|
r""" |
|
Norm layer adaptive layer norm single (adaLN-single). |
|
|
|
As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3). |
|
|
|
Parameters: |
|
embedding_dim (`int`): The size of each embedding vector. |
|
use_additional_conditions (`bool`): To use additional conditions for normalization or not. |
|
""" |
|
|
|
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False): |
|
super().__init__() |
|
|
|
self.emb = CombinedTimestepSizeEmbeddings( |
|
embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions |
|
) |
|
|
|
self.silu = nn.SiLU() |
|
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) |
|
|
|
def forward( |
|
self, |
|
timestep: torch.Tensor, |
|
added_cond_kwargs: Dict[str, torch.Tensor] = None, |
|
batch_size: int = None, |
|
hidden_dtype: Optional[torch.dtype] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
|
|
embedded_timestep = self.emb( |
|
timestep, batch_size=batch_size, hidden_dtype=hidden_dtype, resolution=None, aspect_ratio=None |
|
) |
|
return self.linear(self.silu(embedded_timestep)), embedded_timestep |
|
|
|
|
|
@dataclass |
|
class Transformer3DModelOutput(BaseOutput): |
|
""" |
|
The output of [`Transformer2DModel`]. |
|
|
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): |
|
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability |
|
distributions for the unnoised latent pixels. |
|
""" |
|
|
|
sample: torch.FloatTensor |
|
|
|
|
|
class AllegroTransformer3DModel(ModelMixin, ConfigMixin): |
|
_supports_gradient_checkpointing = True |
|
|
|
""" |
|
A 2D Transformer model for image-like data. |
|
|
|
Parameters: |
|
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. |
|
in_channels (`int`, *optional*): |
|
The number of channels in the input and output (specify if the input is **continuous**). |
|
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. |
|
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). |
|
This is fixed during training since it is used to learn a number of position embeddings. |
|
num_vector_embeds (`int`, *optional*): |
|
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**). |
|
Includes the class for the masked latent pixel. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. |
|
num_embeds_ada_norm ( `int`, *optional*): |
|
The number of diffusion steps used during training. Pass if at least one of the norm_layers is |
|
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are |
|
added to the hidden states. |
|
|
|
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. |
|
attention_bias (`bool`, *optional*): |
|
Configure if the `TransformerBlocks` attention should contain a bias parameter. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
out_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
dropout: float = 0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
sample_size: Optional[int] = None, |
|
sample_size_t: Optional[int] = None, |
|
patch_size: Optional[int] = None, |
|
patch_size_t: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
double_self_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_type: str = "ada_norm", |
|
norm_elementwise_affine: bool = True, |
|
norm_eps: float = 1e-5, |
|
caption_channels: int = None, |
|
interpolation_scale_h: float = None, |
|
interpolation_scale_w: float = None, |
|
interpolation_scale_t: float = None, |
|
use_additional_conditions: Optional[bool] = None, |
|
sa_attention_mode: str = "flash", |
|
ca_attention_mode: str = 'xformers', |
|
downsampler: str = None, |
|
use_rope: bool = False, |
|
model_max_length: int = 300, |
|
): |
|
super().__init__() |
|
self.use_linear_projection = use_linear_projection |
|
self.interpolation_scale_t = interpolation_scale_t |
|
self.interpolation_scale_h = interpolation_scale_h |
|
self.interpolation_scale_w = interpolation_scale_w |
|
self.downsampler = downsampler |
|
self.caption_channels = caption_channels |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
inner_dim = num_attention_heads * attention_head_dim |
|
self.inner_dim = inner_dim |
|
self.in_channels = in_channels |
|
self.out_channels = in_channels if out_channels is None else out_channels |
|
self.use_rope = use_rope |
|
self.model_max_length = model_max_length |
|
self.num_layers = num_layers |
|
self.config.hidden_size = inner_dim |
|
|
|
|
|
|
|
|
|
assert in_channels is not None and patch_size is not None |
|
|
|
|
|
|
|
|
|
assert self.config.sample_size_t is not None, "AllegroTransformer3DModel over patched input must provide sample_size_t" |
|
assert self.config.sample_size is not None, "AllegroTransformer3DModel over patched input must provide sample_size" |
|
|
|
|
|
self.num_frames = self.config.sample_size_t |
|
self.config.sample_size = to_2tuple(self.config.sample_size) |
|
self.height = self.config.sample_size[0] |
|
self.width = self.config.sample_size[1] |
|
self.patch_size_t = self.config.patch_size_t |
|
self.patch_size = self.config.patch_size |
|
interpolation_scale_t = ((self.config.sample_size_t - 1) // 16 + 1) if self.config.sample_size_t % 2 == 1 else self.config.sample_size_t / 16 |
|
interpolation_scale_t = ( |
|
self.config.interpolation_scale_t if self.config.interpolation_scale_t is not None else interpolation_scale_t |
|
) |
|
interpolation_scale = ( |
|
self.config.interpolation_scale_h if self.config.interpolation_scale_h is not None else self.config.sample_size[0] / 30, |
|
self.config.interpolation_scale_w if self.config.interpolation_scale_w is not None else self.config.sample_size[1] / 40, |
|
) |
|
self.pos_embed = PatchEmbed2D( |
|
num_frames=self.config.sample_size_t, |
|
height=self.config.sample_size[0], |
|
width=self.config.sample_size[1], |
|
patch_size_t=self.config.patch_size_t, |
|
patch_size=self.config.patch_size, |
|
in_channels=self.in_channels, |
|
embed_dim=self.inner_dim, |
|
interpolation_scale=interpolation_scale, |
|
interpolation_scale_t=interpolation_scale_t, |
|
use_abs_pos=not self.config.use_rope, |
|
) |
|
interpolation_scale_thw = (interpolation_scale_t, *interpolation_scale) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
only_cross_attention=only_cross_attention, |
|
double_self_attention=double_self_attention, |
|
upcast_attention=upcast_attention, |
|
norm_type=norm_type, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
norm_eps=norm_eps, |
|
sa_attention_mode=sa_attention_mode, |
|
ca_attention_mode=ca_attention_mode, |
|
use_rope=use_rope, |
|
interpolation_scale_thw=interpolation_scale_thw, |
|
block_idx=d, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
|
|
if norm_type != "ada_norm_single": |
|
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim) |
|
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) |
|
elif norm_type == "ada_norm_single": |
|
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) |
|
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) |
|
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) |
|
|
|
|
|
self.adaln_single = None |
|
self.use_additional_conditions = False |
|
if norm_type == "ada_norm_single": |
|
|
|
|
|
|
|
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions) |
|
|
|
self.caption_projection = None |
|
if caption_channels is not None: |
|
self.caption_projection = PixArtAlphaTextProjection( |
|
in_features=caption_channels, hidden_size=inner_dim |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
self.gradient_checkpointing = value |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
timestep: Optional[torch.LongTensor] = None, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
added_cond_kwargs: Dict[str, torch.Tensor] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
): |
|
""" |
|
The [`Transformer2DModel`] forward method. |
|
|
|
Args: |
|
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, frame, channel, height, width)` if continuous): |
|
Input `hidden_states`. |
|
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
timestep ( `torch.LongTensor`, *optional*): |
|
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. |
|
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): |
|
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in |
|
`AdaLayerZeroNorm`. |
|
added_cond_kwargs ( `Dict[str, Any]`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AdaLayerNormSingle` |
|
cross_attention_kwargs ( `Dict[str, Any]`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
attention_mask ( `torch.Tensor`, *optional*): |
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask |
|
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large |
|
negative values to the attention scores corresponding to "discard" tokens. |
|
encoder_attention_mask ( `torch.Tensor`, *optional*): |
|
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: |
|
|
|
* Mask `(batch, sequence_length)` True = keep, False = discard. |
|
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. |
|
|
|
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format |
|
above. This bias will be added to the cross-attention scores. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain |
|
tuple. |
|
|
|
Returns: |
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a |
|
`tuple` where the first element is the sample tensor. |
|
""" |
|
batch_size, c, frame, h, w = hidden_states.shape |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.ndim == 4: |
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask.to(self.dtype) |
|
attention_mask_vid = attention_mask[:, :frame] |
|
|
|
if attention_mask_vid.numel() > 0: |
|
attention_mask_vid = attention_mask_vid.unsqueeze(1) |
|
attention_mask_vid = F.max_pool3d(attention_mask_vid, kernel_size=(self.patch_size_t, self.patch_size, self.patch_size), |
|
stride=(self.patch_size_t, self.patch_size, self.patch_size)) |
|
attention_mask_vid = rearrange(attention_mask_vid, 'b 1 t h w -> (b 1) 1 (t h w)') |
|
|
|
attention_mask_vid = (1 - attention_mask_vid.bool().to(self.dtype)) * -10000.0 if attention_mask_vid.numel() > 0 else None |
|
|
|
|
|
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 3: |
|
|
|
|
|
encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0 |
|
encoder_attention_mask_vid = rearrange(encoder_attention_mask, 'b 1 l -> (b 1) 1 l') if encoder_attention_mask.numel() > 0 else None |
|
|
|
|
|
frame = frame // self.patch_size_t |
|
|
|
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size |
|
|
|
added_cond_kwargs = {"resolution": None, "aspect_ratio": None} if added_cond_kwargs is None else added_cond_kwargs |
|
hidden_states, encoder_hidden_states_vid, \ |
|
timestep_vid, embedded_timestep_vid = self._operate_on_patched_inputs( |
|
hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size, |
|
) |
|
|
|
|
|
for _, block in enumerate(self.transformer_blocks): |
|
hidden_states = block( |
|
hidden_states, |
|
attention_mask_vid, |
|
encoder_hidden_states_vid, |
|
encoder_attention_mask_vid, |
|
timestep_vid, |
|
cross_attention_kwargs, |
|
class_labels, |
|
frame=frame, |
|
height=height, |
|
width=width, |
|
) |
|
|
|
|
|
output = None |
|
if hidden_states is not None: |
|
output = self._get_output_for_patched_inputs( |
|
hidden_states=hidden_states, |
|
timestep=timestep_vid, |
|
class_labels=class_labels, |
|
embedded_timestep=embedded_timestep_vid, |
|
num_frames=frame, |
|
height=height, |
|
width=width, |
|
) |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer3DModelOutput(sample=output) |
|
|
|
def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, batch_size): |
|
|
|
hidden_states_vid = self.pos_embed(hidden_states.to(self.dtype)) |
|
timestep_vid = None |
|
embedded_timestep_vid = None |
|
encoder_hidden_states_vid = None |
|
|
|
if self.adaln_single is not None: |
|
if self.use_additional_conditions and added_cond_kwargs is None: |
|
raise ValueError( |
|
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`." |
|
) |
|
timestep, embedded_timestep = self.adaln_single( |
|
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=self.dtype |
|
) |
|
|
|
timestep_vid = timestep |
|
embedded_timestep_vid = embedded_timestep |
|
|
|
if self.caption_projection is not None: |
|
encoder_hidden_states = self.caption_projection(encoder_hidden_states) |
|
encoder_hidden_states_vid = rearrange(encoder_hidden_states[:, :1], 'b 1 l d -> (b 1) l d') |
|
|
|
return hidden_states_vid, encoder_hidden_states_vid, timestep_vid, embedded_timestep_vid |
|
|
|
def _get_output_for_patched_inputs( |
|
self, hidden_states, timestep, class_labels, embedded_timestep, num_frames, height=None, width=None |
|
): |
|
|
|
if self.config.norm_type != "ada_norm_single": |
|
conditioning = self.transformer_blocks[0].norm1.emb( |
|
timestep, class_labels, hidden_dtype=self.dtype |
|
) |
|
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) |
|
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] |
|
hidden_states = self.proj_out_2(hidden_states) |
|
elif self.config.norm_type == "ada_norm_single": |
|
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) |
|
hidden_states = self.norm_out(hidden_states) |
|
|
|
hidden_states = hidden_states * (1 + scale) + shift |
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = hidden_states.squeeze(1) |
|
|
|
|
|
if self.adaln_single is None: |
|
height = width = int(hidden_states.shape[1] ** 0.5) |
|
hidden_states = hidden_states.reshape( |
|
shape=(-1, num_frames, height, width, self.patch_size_t, self.patch_size, self.patch_size, self.out_channels) |
|
) |
|
hidden_states = torch.einsum("nthwopqc->nctohpwq", hidden_states) |
|
output = hidden_states.reshape( |
|
shape=(-1, self.out_channels, num_frames * self.patch_size_t, height * self.patch_size, width * self.patch_size) |
|
) |
|
return output |
|
|