update weight
Browse files- model_index.json +0 -27
- pipeline_allegro.py +0 -832
model_index.json
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_class_name": [
|
3 |
-
"pipeline_allegro",
|
4 |
-
"AllegroPipeline"
|
5 |
-
],
|
6 |
-
"_diffusers_version": "0.30.3",
|
7 |
-
"scheduler": [
|
8 |
-
"diffusers",
|
9 |
-
"EulerAncestralDiscreteScheduler"
|
10 |
-
],
|
11 |
-
"text_encoder": [
|
12 |
-
"transformers",
|
13 |
-
"T5EncoderModel"
|
14 |
-
],
|
15 |
-
"tokenizer": [
|
16 |
-
"transformers",
|
17 |
-
"T5Tokenizer"
|
18 |
-
],
|
19 |
-
"transformer": [
|
20 |
-
"transformer_3d_allegro",
|
21 |
-
"AllegroTransformer3DModel"
|
22 |
-
],
|
23 |
-
"vae": [
|
24 |
-
"vae_allegro",
|
25 |
-
"AllegroAutoencoderKL3D"
|
26 |
-
]
|
27 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pipeline_allegro.py
DELETED
@@ -1,832 +0,0 @@
|
|
1 |
-
# Adapted from Open-Sora-Plan
|
2 |
-
|
3 |
-
# This source code is licensed under the license found in the
|
4 |
-
# LICENSE file in the root directory of this source tree.
|
5 |
-
# --------------------------------------------------------
|
6 |
-
# References:
|
7 |
-
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan
|
8 |
-
# --------------------------------------------------------
|
9 |
-
|
10 |
-
import html
|
11 |
-
import inspect
|
12 |
-
import math
|
13 |
-
import re
|
14 |
-
import urllib.parse as ul
|
15 |
-
from typing import Callable, List, Optional, Tuple, Union
|
16 |
-
from einops import rearrange
|
17 |
-
import ftfy
|
18 |
-
import torch
|
19 |
-
from dataclasses import dataclass
|
20 |
-
import tqdm
|
21 |
-
from bs4 import BeautifulSoup
|
22 |
-
|
23 |
-
from diffusers import DiffusionPipeline, ModelMixin
|
24 |
-
from diffusers.schedulers import EulerAncestralDiscreteScheduler
|
25 |
-
from diffusers.utils import (
|
26 |
-
BACKENDS_MAPPING,
|
27 |
-
is_bs4_available,
|
28 |
-
is_ftfy_available,
|
29 |
-
logging,
|
30 |
-
replace_example_docstring,
|
31 |
-
BaseOutput
|
32 |
-
)
|
33 |
-
from diffusers.utils.torch_utils import randn_tensor
|
34 |
-
from transformers import T5EncoderModel, T5Tokenizer
|
35 |
-
|
36 |
-
logger = logging.get_logger(__name__)
|
37 |
-
|
38 |
-
# from transformer_3d_allegro import AllegroTransformer3DModel
|
39 |
-
# from vae_allegro import AllegroAutoencoderKL3D
|
40 |
-
@dataclass
|
41 |
-
class AllegroPipelineOutput(BaseOutput):
|
42 |
-
r"""
|
43 |
-
Output class for Allegro pipelines.
|
44 |
-
|
45 |
-
Args:
|
46 |
-
video (`torch.Tensor`):
|
47 |
-
Torch tensor with shape `(batch_size, num_frames, channels, height, width)`.
|
48 |
-
"""
|
49 |
-
video: torch.Tensor
|
50 |
-
|
51 |
-
|
52 |
-
EXAMPLE_DOC_STRING = """
|
53 |
-
Examples:
|
54 |
-
```py
|
55 |
-
>>> import torch
|
56 |
-
|
57 |
-
>>> # You can replace the your_path_to_model with your own path.
|
58 |
-
>>> pipe = AllegroPipeline.from_pretrained(your_path_to_model, torch_dtype=torch.float16, trust_remote_code=True)
|
59 |
-
|
60 |
-
>>> prompt = "A small cactus with a happy face in the Sahara desert."
|
61 |
-
>>> image = pipe(prompt).video[0]
|
62 |
-
```
|
63 |
-
"""
|
64 |
-
|
65 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
66 |
-
def retrieve_timesteps(
|
67 |
-
scheduler,
|
68 |
-
num_inference_steps: Optional[int] = None,
|
69 |
-
device: Optional[Union[str, torch.device]] = None,
|
70 |
-
timesteps: Optional[List[int]] = None,
|
71 |
-
**kwargs,
|
72 |
-
):
|
73 |
-
"""
|
74 |
-
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
75 |
-
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
76 |
-
|
77 |
-
Args:
|
78 |
-
scheduler (`SchedulerMixin`):
|
79 |
-
The scheduler to get timesteps from.
|
80 |
-
num_inference_steps (`int`):
|
81 |
-
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
82 |
-
must be `None`.
|
83 |
-
device (`str` or `torch.device`, *optional*):
|
84 |
-
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
85 |
-
timesteps (`List[int]`, *optional*):
|
86 |
-
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
87 |
-
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
88 |
-
must be `None`.
|
89 |
-
|
90 |
-
Returns:
|
91 |
-
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
92 |
-
second element is the number of inference steps.
|
93 |
-
"""
|
94 |
-
if timesteps is not None:
|
95 |
-
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
96 |
-
if not accepts_timesteps:
|
97 |
-
raise ValueError(
|
98 |
-
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
99 |
-
f" timestep schedules. Please check whether you are using the correct scheduler."
|
100 |
-
)
|
101 |
-
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
102 |
-
timesteps = scheduler.timesteps
|
103 |
-
num_inference_steps = len(timesteps)
|
104 |
-
else:
|
105 |
-
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
106 |
-
timesteps = scheduler.timesteps
|
107 |
-
return timesteps, num_inference_steps
|
108 |
-
|
109 |
-
|
110 |
-
class AllegroPipeline(DiffusionPipeline):
|
111 |
-
r"""
|
112 |
-
Pipeline for text-to-image generation using Allegro.
|
113 |
-
|
114 |
-
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
115 |
-
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
116 |
-
|
117 |
-
Args:
|
118 |
-
vae ([`AllegroAutoEncoderKL3D`]):
|
119 |
-
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
120 |
-
text_encoder ([`T5EncoderModel`]):
|
121 |
-
Frozen text-encoder. PixArt-Alpha uses
|
122 |
-
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
123 |
-
[t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
|
124 |
-
tokenizer (`T5Tokenizer`):
|
125 |
-
Tokenizer of class
|
126 |
-
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
127 |
-
transformer ([`AllegroTransformer3DModel`]):
|
128 |
-
A text conditioned `AllegroTransformer3DModel` to denoise the encoded image latents.
|
129 |
-
scheduler ([`SchedulerMixin`]):
|
130 |
-
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
131 |
-
"""
|
132 |
-
bad_punct_regex = re.compile(
|
133 |
-
r"[" + "#®•©™&@·º½¾¿¡§~" + "\)" + "\(" + "\]" + "\[" + "\}" + "\{" + "\|" + "\\" + "\/" + "\*" + r"]{1,}"
|
134 |
-
) # noqa
|
135 |
-
|
136 |
-
_optional_components = ["tokenizer", "text_encoder", "vae", "transformer", "scheduler"]
|
137 |
-
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
138 |
-
|
139 |
-
def __init__(
|
140 |
-
self,
|
141 |
-
tokenizer: Optional[T5Tokenizer] = None,
|
142 |
-
text_encoder: Optional[T5EncoderModel] = None,
|
143 |
-
vae: Optional[ModelMixin] = None,
|
144 |
-
transformer: Optional[ModelMixin] = None,
|
145 |
-
scheduler: Optional[EulerAncestralDiscreteScheduler] = None,
|
146 |
-
device: torch.device = torch.device("cuda"),
|
147 |
-
dtype: torch.dtype = torch.float16,
|
148 |
-
):
|
149 |
-
super().__init__()
|
150 |
-
# # init
|
151 |
-
# if tokenizer is None:
|
152 |
-
# tokenizer = T5Tokenizer.from_pretrained(tokenizer)
|
153 |
-
# if text_encoder is None:
|
154 |
-
# text_encoder = T5EncoderModel.from_pretrained(text_encoder, torch_dtype=torch.float16)
|
155 |
-
# if vae is None:
|
156 |
-
# vae = AllegroAutoencoderKL3D.from_pretrained(vae).to(dtype=torch.float32)
|
157 |
-
# if transformer is None:
|
158 |
-
# transformer = AllegroTransformer3DModel.from_pretrained(transformer, torch_dtype=dtype)
|
159 |
-
# if scheduler is None:
|
160 |
-
# scheduler = EulerAncestralDiscreteScheduler()
|
161 |
-
self.register_modules(
|
162 |
-
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
163 |
-
)
|
164 |
-
|
165 |
-
|
166 |
-
# Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
|
167 |
-
def encode_prompt(
|
168 |
-
self,
|
169 |
-
prompt: Union[str, List[str]],
|
170 |
-
do_classifier_free_guidance: bool = True,
|
171 |
-
negative_prompt: str = "",
|
172 |
-
num_images_per_prompt: int = 1,
|
173 |
-
device: Optional[torch.device] = None,
|
174 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
175 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
176 |
-
prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
177 |
-
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
178 |
-
clean_caption: bool = False,
|
179 |
-
max_sequence_length: int = 120,
|
180 |
-
**kwargs,
|
181 |
-
):
|
182 |
-
r"""
|
183 |
-
Encodes the prompt into text encoder hidden states.
|
184 |
-
|
185 |
-
Args:
|
186 |
-
prompt (`str` or `List[str]`, *optional*):
|
187 |
-
prompt to be encoded
|
188 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
189 |
-
The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
|
190 |
-
instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
|
191 |
-
PixArt-Alpha, this should be "".
|
192 |
-
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
193 |
-
whether to use classifier free guidance or not
|
194 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
195 |
-
number of images that should be generated per prompt
|
196 |
-
device: (`torch.device`, *optional*):
|
197 |
-
torch device to place the resulting embeddings on
|
198 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
199 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
200 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
201 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
202 |
-
Pre-generated negative text embeddings. For PixArt-Alpha, it's should be the embeddings of the ""
|
203 |
-
string.
|
204 |
-
clean_caption (`bool`, defaults to `False`):
|
205 |
-
If `True`, the function will preprocess and clean the provided caption before encoding.
|
206 |
-
max_sequence_length (`int`, defaults to 120): Maximum sequence length to use for the prompt.
|
207 |
-
"""
|
208 |
-
embeds_initially_provided = prompt_embeds is not None and negative_prompt_embeds is not None
|
209 |
-
|
210 |
-
if device is None:
|
211 |
-
device = self._execution_device
|
212 |
-
|
213 |
-
if prompt is not None and isinstance(prompt, str):
|
214 |
-
batch_size = 1
|
215 |
-
elif prompt is not None and isinstance(prompt, list):
|
216 |
-
batch_size = len(prompt)
|
217 |
-
else:
|
218 |
-
batch_size = prompt_embeds.shape[0]
|
219 |
-
|
220 |
-
# See Section 3.1. of the paper.
|
221 |
-
max_length = max_sequence_length
|
222 |
-
|
223 |
-
if prompt_embeds is None:
|
224 |
-
prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)
|
225 |
-
text_inputs = self.tokenizer(
|
226 |
-
prompt,
|
227 |
-
padding="max_length",
|
228 |
-
max_length=max_length,
|
229 |
-
truncation=True,
|
230 |
-
add_special_tokens=True,
|
231 |
-
return_tensors="pt",
|
232 |
-
)
|
233 |
-
text_input_ids = text_inputs.input_ids
|
234 |
-
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
235 |
-
|
236 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
237 |
-
text_input_ids, untruncated_ids
|
238 |
-
):
|
239 |
-
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_length - 1 : -1])
|
240 |
-
logger.warning(
|
241 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
242 |
-
f" {max_length} tokens: {removed_text}"
|
243 |
-
)
|
244 |
-
|
245 |
-
prompt_attention_mask = text_inputs.attention_mask
|
246 |
-
prompt_attention_mask = prompt_attention_mask.to(device)
|
247 |
-
|
248 |
-
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
|
249 |
-
prompt_embeds = prompt_embeds[0]
|
250 |
-
|
251 |
-
if self.text_encoder is not None:
|
252 |
-
dtype = self.text_encoder.dtype
|
253 |
-
elif self.transformer is not None:
|
254 |
-
dtype = self.transformer.dtype
|
255 |
-
else:
|
256 |
-
dtype = None
|
257 |
-
|
258 |
-
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
259 |
-
|
260 |
-
bs_embed, seq_len, _ = prompt_embeds.shape
|
261 |
-
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
262 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
263 |
-
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
264 |
-
prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
|
265 |
-
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
266 |
-
|
267 |
-
# get unconditional embeddings for classifier free guidance
|
268 |
-
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
269 |
-
uncond_tokens = [negative_prompt] * batch_size
|
270 |
-
uncond_tokens = self._text_preprocessing(uncond_tokens, clean_caption=clean_caption)
|
271 |
-
max_length = prompt_embeds.shape[1]
|
272 |
-
uncond_input = self.tokenizer(
|
273 |
-
uncond_tokens,
|
274 |
-
padding="max_length",
|
275 |
-
max_length=max_length,
|
276 |
-
truncation=True,
|
277 |
-
return_attention_mask=True,
|
278 |
-
add_special_tokens=True,
|
279 |
-
return_tensors="pt",
|
280 |
-
)
|
281 |
-
negative_prompt_attention_mask = uncond_input.attention_mask
|
282 |
-
negative_prompt_attention_mask = negative_prompt_attention_mask.to(device)
|
283 |
-
|
284 |
-
negative_prompt_embeds = self.text_encoder(
|
285 |
-
uncond_input.input_ids.to(device),
|
286 |
-
attention_mask=negative_prompt_attention_mask,
|
287 |
-
)
|
288 |
-
negative_prompt_embeds = negative_prompt_embeds[0]
|
289 |
-
|
290 |
-
if do_classifier_free_guidance:
|
291 |
-
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
292 |
-
seq_len = negative_prompt_embeds.shape[1]
|
293 |
-
|
294 |
-
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
295 |
-
|
296 |
-
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
297 |
-
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
298 |
-
|
299 |
-
negative_prompt_attention_mask = negative_prompt_attention_mask.view(bs_embed, -1)
|
300 |
-
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
301 |
-
else:
|
302 |
-
negative_prompt_embeds = None
|
303 |
-
negative_prompt_attention_mask = None
|
304 |
-
|
305 |
-
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
|
306 |
-
|
307 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
308 |
-
def prepare_extra_step_kwargs(self, generator, eta):
|
309 |
-
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
310 |
-
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
311 |
-
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
312 |
-
# and should be between [0, 1]
|
313 |
-
|
314 |
-
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
315 |
-
extra_step_kwargs = {}
|
316 |
-
if accepts_eta:
|
317 |
-
extra_step_kwargs["eta"] = eta
|
318 |
-
|
319 |
-
# check if the scheduler accepts generator
|
320 |
-
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
321 |
-
if accepts_generator:
|
322 |
-
extra_step_kwargs["generator"] = generator
|
323 |
-
return extra_step_kwargs
|
324 |
-
|
325 |
-
def check_inputs(
|
326 |
-
self,
|
327 |
-
prompt,
|
328 |
-
num_frames,
|
329 |
-
height,
|
330 |
-
width,
|
331 |
-
negative_prompt,
|
332 |
-
callback_steps,
|
333 |
-
prompt_embeds=None,
|
334 |
-
negative_prompt_embeds=None,
|
335 |
-
prompt_attention_mask=None,
|
336 |
-
negative_prompt_attention_mask=None,
|
337 |
-
):
|
338 |
-
|
339 |
-
if num_frames <= 0:
|
340 |
-
raise ValueError(f"`num_frames` have to be positive but is {num_frames}.")
|
341 |
-
if height % 8 != 0 or width % 8 != 0:
|
342 |
-
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
343 |
-
|
344 |
-
if (callback_steps is None) or (
|
345 |
-
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
346 |
-
):
|
347 |
-
raise ValueError(
|
348 |
-
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
349 |
-
f" {type(callback_steps)}."
|
350 |
-
)
|
351 |
-
|
352 |
-
if prompt is not None and prompt_embeds is not None:
|
353 |
-
raise ValueError(
|
354 |
-
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
355 |
-
" only forward one of the two."
|
356 |
-
)
|
357 |
-
elif prompt is None and prompt_embeds is None:
|
358 |
-
raise ValueError(
|
359 |
-
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
360 |
-
)
|
361 |
-
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
362 |
-
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
363 |
-
|
364 |
-
if prompt is not None and negative_prompt_embeds is not None:
|
365 |
-
raise ValueError(
|
366 |
-
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
|
367 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
368 |
-
)
|
369 |
-
|
370 |
-
if negative_prompt is not None and negative_prompt_embeds is not None:
|
371 |
-
raise ValueError(
|
372 |
-
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
373 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
374 |
-
)
|
375 |
-
|
376 |
-
if prompt_embeds is not None and prompt_attention_mask is None:
|
377 |
-
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
|
378 |
-
|
379 |
-
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
|
380 |
-
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
|
381 |
-
|
382 |
-
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
383 |
-
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
384 |
-
raise ValueError(
|
385 |
-
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
386 |
-
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
387 |
-
f" {negative_prompt_embeds.shape}."
|
388 |
-
)
|
389 |
-
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
|
390 |
-
raise ValueError(
|
391 |
-
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
|
392 |
-
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
|
393 |
-
f" {negative_prompt_attention_mask.shape}."
|
394 |
-
)
|
395 |
-
|
396 |
-
|
397 |
-
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
|
398 |
-
def _text_preprocessing(self, text, clean_caption=False):
|
399 |
-
if clean_caption and not is_bs4_available():
|
400 |
-
logger.warning(BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`"))
|
401 |
-
logger.warning("Setting `clean_caption` to False...")
|
402 |
-
clean_caption = False
|
403 |
-
|
404 |
-
if clean_caption and not is_ftfy_available():
|
405 |
-
logger.warning(BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`"))
|
406 |
-
logger.warning("Setting `clean_caption` to False...")
|
407 |
-
clean_caption = False
|
408 |
-
|
409 |
-
if not isinstance(text, (tuple, list)):
|
410 |
-
text = [text]
|
411 |
-
|
412 |
-
def process(text: str):
|
413 |
-
if clean_caption:
|
414 |
-
text = self._clean_caption(text)
|
415 |
-
text = self._clean_caption(text)
|
416 |
-
else:
|
417 |
-
text = text.lower().strip()
|
418 |
-
return text
|
419 |
-
|
420 |
-
return [process(t) for t in text]
|
421 |
-
|
422 |
-
# Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
|
423 |
-
def _clean_caption(self, caption):
|
424 |
-
caption = str(caption)
|
425 |
-
caption = ul.unquote_plus(caption)
|
426 |
-
caption = caption.strip().lower()
|
427 |
-
caption = re.sub("<person>", "person", caption)
|
428 |
-
# urls:
|
429 |
-
caption = re.sub(
|
430 |
-
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",
|
431 |
-
# noqa
|
432 |
-
"",
|
433 |
-
caption,
|
434 |
-
) # regex for urls
|
435 |
-
caption = re.sub(
|
436 |
-
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",
|
437 |
-
# noqa
|
438 |
-
"",
|
439 |
-
caption,
|
440 |
-
) # regex for urls
|
441 |
-
# html:
|
442 |
-
caption = BeautifulSoup(caption, features="html.parser").text
|
443 |
-
|
444 |
-
# @<nickname>
|
445 |
-
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
446 |
-
|
447 |
-
# 31C0—31EF CJK Strokes
|
448 |
-
# 31F0—31FF Katakana Phonetic Extensions
|
449 |
-
# 3200—32FF Enclosed CJK Letters and Months
|
450 |
-
# 3300—33FF CJK Compatibility
|
451 |
-
# 3400—4DBF CJK Unified Ideographs Extension A
|
452 |
-
# 4DC0—4DFF Yijing Hexagram Symbols
|
453 |
-
# 4E00—9FFF CJK Unified Ideographs
|
454 |
-
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
455 |
-
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
456 |
-
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
457 |
-
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
458 |
-
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
459 |
-
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
460 |
-
# caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
461 |
-
#######################################################
|
462 |
-
|
463 |
-
# все виды тире / all types of dash --> "-"
|
464 |
-
caption = re.sub(
|
465 |
-
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+",
|
466 |
-
# noqa
|
467 |
-
"-",
|
468 |
-
caption,
|
469 |
-
)
|
470 |
-
|
471 |
-
# кавычки к одному стандарту
|
472 |
-
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
473 |
-
caption = re.sub(r"[‘’]", "'", caption)
|
474 |
-
|
475 |
-
# "
|
476 |
-
caption = re.sub(r""?", "", caption)
|
477 |
-
# &
|
478 |
-
caption = re.sub(r"&", "", caption)
|
479 |
-
|
480 |
-
# ip adresses:
|
481 |
-
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
482 |
-
|
483 |
-
# article ids:
|
484 |
-
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
485 |
-
|
486 |
-
# \n
|
487 |
-
caption = re.sub(r"\\n", " ", caption)
|
488 |
-
|
489 |
-
# "#123"
|
490 |
-
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
491 |
-
# "#12345.."
|
492 |
-
caption = re.sub(r"#\d{5,}\b", "", caption)
|
493 |
-
# "123456.."
|
494 |
-
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
495 |
-
# filenames:
|
496 |
-
caption = re.sub(r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
|
497 |
-
|
498 |
-
#
|
499 |
-
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
500 |
-
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
501 |
-
|
502 |
-
caption = re.sub(self.bad_punct_regex, r" ", caption) # ***AUSVERKAUFT***, #AUSVERKAUFT
|
503 |
-
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
504 |
-
|
505 |
-
# this-is-my-cute-cat / this_is_my_cute_cat
|
506 |
-
regex2 = re.compile(r"(?:\-|\_)")
|
507 |
-
if len(re.findall(regex2, caption)) > 3:
|
508 |
-
caption = re.sub(regex2, " ", caption)
|
509 |
-
|
510 |
-
caption = ftfy.fix_text(caption)
|
511 |
-
caption = html.unescape(html.unescape(caption))
|
512 |
-
|
513 |
-
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
514 |
-
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
515 |
-
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
516 |
-
|
517 |
-
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
518 |
-
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
519 |
-
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
520 |
-
caption = re.sub(r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
|
521 |
-
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
522 |
-
|
523 |
-
caption = re.sub(r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption) # j2d1a2a...
|
524 |
-
|
525 |
-
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
526 |
-
|
527 |
-
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
528 |
-
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
529 |
-
caption = re.sub(r"\s+", " ", caption)
|
530 |
-
|
531 |
-
caption.strip()
|
532 |
-
|
533 |
-
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
534 |
-
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
535 |
-
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
536 |
-
caption = re.sub(r"^\.\S+$", "", caption)
|
537 |
-
return caption.strip()
|
538 |
-
|
539 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
540 |
-
def prepare_latents(
|
541 |
-
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
|
542 |
-
):
|
543 |
-
shape = (
|
544 |
-
batch_size,
|
545 |
-
num_channels_latents,
|
546 |
-
(math.ceil((int(num_frames) - 1) / self.vae.vae_scale_factor[0]) + 1)
|
547 |
-
if int(num_frames) % 2 == 1
|
548 |
-
else math.ceil(int(num_frames) / self.vae.vae_scale_factor[0]),
|
549 |
-
math.ceil(int(height) / self.vae.vae_scale_factor[1]),
|
550 |
-
math.ceil(int(width) / self.vae.vae_scale_factor[2]),
|
551 |
-
)
|
552 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
553 |
-
raise ValueError(
|
554 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
555 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
556 |
-
)
|
557 |
-
|
558 |
-
if latents is None:
|
559 |
-
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
560 |
-
else:
|
561 |
-
latents = latents.to(device)
|
562 |
-
|
563 |
-
# scale the initial noise by the standard deviation required by the scheduler
|
564 |
-
latents = latents * self.scheduler.init_noise_sigma
|
565 |
-
|
566 |
-
|
567 |
-
return latents
|
568 |
-
|
569 |
-
@torch.no_grad()
|
570 |
-
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
571 |
-
def __call__(
|
572 |
-
self,
|
573 |
-
prompt: Union[str, List[str]] = None,
|
574 |
-
negative_prompt: str = "",
|
575 |
-
num_inference_steps: int = 100,
|
576 |
-
timesteps: List[int] = None,
|
577 |
-
guidance_scale: float = 7.5,
|
578 |
-
num_images_per_prompt: Optional[int] = 1,
|
579 |
-
num_frames: Optional[int] = None,
|
580 |
-
height: Optional[int] = None,
|
581 |
-
width: Optional[int] = None,
|
582 |
-
eta: float = 0.0,
|
583 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
584 |
-
latents: Optional[torch.FloatTensor] = None,
|
585 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
586 |
-
prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
587 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
588 |
-
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
589 |
-
output_type: Optional[str] = "pil",
|
590 |
-
return_dict: bool = True,
|
591 |
-
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
592 |
-
callback_steps: int = 1,
|
593 |
-
clean_caption: bool = True,
|
594 |
-
max_sequence_length: int = 512,
|
595 |
-
verbose: bool = True,
|
596 |
-
) -> Union[AllegroPipelineOutput, Tuple]:
|
597 |
-
"""
|
598 |
-
Function invoked when calling the pipeline for generation.
|
599 |
-
|
600 |
-
Args:
|
601 |
-
prompt (`str` or `List[str]`, *optional*):
|
602 |
-
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
603 |
-
instead.
|
604 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
605 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
606 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
607 |
-
less than `1`).
|
608 |
-
num_inference_steps (`int`, *optional*, defaults to 100):
|
609 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
610 |
-
expense of slower inference.
|
611 |
-
timesteps (`List[int]`, *optional*):
|
612 |
-
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
|
613 |
-
timesteps are used. Must be in descending order.
|
614 |
-
guidance_scale (`float`, *optional*, defaults to 7.0):
|
615 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
616 |
-
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
617 |
-
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
618 |
-
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
619 |
-
usually at the expense of lower image quality.
|
620 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
621 |
-
The number of images to generate per prompt.
|
622 |
-
num_frames: (`int`, *optional*, defaults to 88):
|
623 |
-
The number controls the generated video frames.
|
624 |
-
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
625 |
-
The height in pixels of the generated image.
|
626 |
-
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
627 |
-
The width in pixels of the generated image.
|
628 |
-
eta (`float`, *optional*, defaults to 0.0):
|
629 |
-
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
630 |
-
[`schedulers.DDIMScheduler`], will be ignored for others.
|
631 |
-
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
632 |
-
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
633 |
-
to make generation deterministic.
|
634 |
-
latents (`torch.FloatTensor`, *optional*):
|
635 |
-
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
636 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
637 |
-
tensor will ge generated by sampling using the supplied random `generator`.
|
638 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
639 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
640 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
641 |
-
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
|
642 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
643 |
-
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
|
644 |
-
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
645 |
-
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
|
646 |
-
Pre-generated attention mask for negative text embeddings.
|
647 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
648 |
-
The output format of the generate image. Choose between
|
649 |
-
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
650 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
651 |
-
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
652 |
-
callback (`Callable`, *optional*):
|
653 |
-
A function that will be called every `callback_steps` steps during inference. The function will be
|
654 |
-
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
655 |
-
callback_steps (`int`, *optional*, defaults to 1):
|
656 |
-
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
657 |
-
called at every step.
|
658 |
-
clean_caption (`bool`, *optional*, defaults to `True`):
|
659 |
-
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
660 |
-
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
661 |
-
prompt.
|
662 |
-
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
663 |
-
|
664 |
-
Examples:
|
665 |
-
|
666 |
-
Returns:
|
667 |
-
[`~pipelines.ImagePipelineOutput`] or `tuple`:
|
668 |
-
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
|
669 |
-
returned where the first element is a list with the generated images
|
670 |
-
"""
|
671 |
-
# 1. Check inputs. Raise error if not correct
|
672 |
-
num_frames = num_frames or self.transformer.config.sample_size_t * self.vae.vae_scale_factor[0]
|
673 |
-
height = height or self.transformer.config.sample_size[0] * self.vae.vae_scale_factor[1]
|
674 |
-
width = width or self.transformer.config.sample_size[1] * self.vae.vae_scale_factor[2]
|
675 |
-
|
676 |
-
self.check_inputs(
|
677 |
-
prompt,
|
678 |
-
num_frames,
|
679 |
-
height,
|
680 |
-
width,
|
681 |
-
negative_prompt,
|
682 |
-
callback_steps,
|
683 |
-
prompt_embeds,
|
684 |
-
negative_prompt_embeds,
|
685 |
-
prompt_attention_mask,
|
686 |
-
negative_prompt_attention_mask,
|
687 |
-
)
|
688 |
-
|
689 |
-
# 2. Default height and width to transformer
|
690 |
-
if prompt is not None and isinstance(prompt, str):
|
691 |
-
batch_size = 1
|
692 |
-
elif prompt is not None and isinstance(prompt, list):
|
693 |
-
batch_size = len(prompt)
|
694 |
-
else:
|
695 |
-
batch_size = prompt_embeds.shape[0]
|
696 |
-
|
697 |
-
device = self._execution_device
|
698 |
-
|
699 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
700 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
701 |
-
# corresponds to doing no classifier free guidance.
|
702 |
-
do_classifier_free_guidance = guidance_scale > 1.0
|
703 |
-
|
704 |
-
# 3. Encode input prompt
|
705 |
-
(
|
706 |
-
prompt_embeds,
|
707 |
-
prompt_attention_mask,
|
708 |
-
negative_prompt_embeds,
|
709 |
-
negative_prompt_attention_mask,
|
710 |
-
) = self.encode_prompt(
|
711 |
-
prompt,
|
712 |
-
do_classifier_free_guidance,
|
713 |
-
negative_prompt=negative_prompt,
|
714 |
-
num_images_per_prompt=num_images_per_prompt,
|
715 |
-
device=device,
|
716 |
-
prompt_embeds=prompt_embeds,
|
717 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
718 |
-
prompt_attention_mask=prompt_attention_mask,
|
719 |
-
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
720 |
-
clean_caption=clean_caption,
|
721 |
-
max_sequence_length=max_sequence_length,
|
722 |
-
)
|
723 |
-
if do_classifier_free_guidance:
|
724 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
725 |
-
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
726 |
-
|
727 |
-
# 4. Prepare timesteps
|
728 |
-
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
729 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
730 |
-
|
731 |
-
# 5. Prepare latents.
|
732 |
-
latent_channels = self.transformer.config.in_channels
|
733 |
-
latents = self.prepare_latents(
|
734 |
-
batch_size * num_images_per_prompt,
|
735 |
-
latent_channels,
|
736 |
-
num_frames,
|
737 |
-
height,
|
738 |
-
width,
|
739 |
-
prompt_embeds.dtype,
|
740 |
-
device,
|
741 |
-
generator,
|
742 |
-
latents,
|
743 |
-
)
|
744 |
-
|
745 |
-
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
746 |
-
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
747 |
-
|
748 |
-
# 6.1 Prepare micro-conditions.
|
749 |
-
added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
|
750 |
-
|
751 |
-
# 7. Denoising loop
|
752 |
-
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
753 |
-
|
754 |
-
progress_wrap = tqdm.tqdm if verbose else (lambda x: x)
|
755 |
-
for i, t in progress_wrap(list(enumerate(timesteps))):
|
756 |
-
|
757 |
-
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
758 |
-
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
759 |
-
|
760 |
-
current_timestep = t
|
761 |
-
if not torch.is_tensor(current_timestep):
|
762 |
-
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
763 |
-
# This would be a good case for the `match` statement (Python 3.10+)
|
764 |
-
is_mps = latent_model_input.device.type == "mps"
|
765 |
-
if isinstance(current_timestep, float):
|
766 |
-
dtype = torch.float32 if is_mps else torch.float64
|
767 |
-
else:
|
768 |
-
dtype = torch.int32 if is_mps else torch.int64
|
769 |
-
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
|
770 |
-
elif len(current_timestep.shape) == 0:
|
771 |
-
current_timestep = current_timestep[None].to(latent_model_input.device)
|
772 |
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
773 |
-
current_timestep = current_timestep.expand(latent_model_input.shape[0])
|
774 |
-
|
775 |
-
if prompt_embeds.ndim == 3:
|
776 |
-
prompt_embeds = prompt_embeds.unsqueeze(1) # b l d -> b 1 l d
|
777 |
-
if prompt_attention_mask.ndim == 2:
|
778 |
-
prompt_attention_mask = prompt_attention_mask.unsqueeze(1) # b l -> b 1 l
|
779 |
-
# prepare attention_mask.
|
780 |
-
# b c t h w -> b t h w
|
781 |
-
attention_mask = torch.ones_like(latent_model_input)[:, 0]
|
782 |
-
# predict noise model_output
|
783 |
-
noise_pred = self.transformer(
|
784 |
-
latent_model_input,
|
785 |
-
attention_mask=attention_mask,
|
786 |
-
encoder_hidden_states=prompt_embeds,
|
787 |
-
encoder_attention_mask=prompt_attention_mask,
|
788 |
-
timestep=current_timestep,
|
789 |
-
added_cond_kwargs=added_cond_kwargs,
|
790 |
-
return_dict=False,
|
791 |
-
)[0]
|
792 |
-
|
793 |
-
# perform guidance
|
794 |
-
if do_classifier_free_guidance:
|
795 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
796 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
797 |
-
|
798 |
-
# learned sigma
|
799 |
-
if self.transformer.config.out_channels // 2 == latent_channels:
|
800 |
-
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
801 |
-
else:
|
802 |
-
noise_pred = noise_pred
|
803 |
-
|
804 |
-
# compute previous image: x_t -> x_t-1
|
805 |
-
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
806 |
-
|
807 |
-
# call the callback, if provided
|
808 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
809 |
-
if callback is not None and i % callback_steps == 0:
|
810 |
-
step_idx = i // getattr(self.scheduler, "order", 1)
|
811 |
-
callback(step_idx, t, latents)
|
812 |
-
|
813 |
-
if not output_type == "latents":
|
814 |
-
video = self.decode_latents(latents)
|
815 |
-
video = video[:, :num_frames, :height, :width]
|
816 |
-
else:
|
817 |
-
video = latents
|
818 |
-
return AllegroPipelineOutput(video=video)
|
819 |
-
|
820 |
-
# Offload all models
|
821 |
-
self.maybe_free_model_hooks()
|
822 |
-
|
823 |
-
if not return_dict:
|
824 |
-
return (video,)
|
825 |
-
|
826 |
-
return AllegroPipelineOutput(video=video)
|
827 |
-
|
828 |
-
def decode_latents(self, latents):
|
829 |
-
video = self.vae.decode(latents.to(self.vae.dtype) / self.vae.scale_factor).sample
|
830 |
-
# b t c h w -> b t h w c
|
831 |
-
video = ((video / 2.0 + 0.5).clamp(0, 1) * 255).to(dtype=torch.uint8).cpu().permute(0, 1, 3, 4, 2).contiguous()
|
832 |
-
return video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|