Update README.md
Browse files
README.md
CHANGED
@@ -17,7 +17,10 @@ library_name: diffusers
|
|
17 |
|
18 |
|
19 |
# Key Feature
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
|
23 |
# Model info
|
@@ -29,7 +32,7 @@ Allegro is capable of producing high-quality, 6-second videos at 30 frames per s
|
|
29 |
</tr>
|
30 |
<tr>
|
31 |
<th>Description</th>
|
32 |
-
<td>Text-to-Video
|
33 |
</tr>
|
34 |
<tr>
|
35 |
<th>Download</th>
|
@@ -76,17 +79,14 @@ Allegro is capable of producing high-quality, 6-second videos at 30 frames per s
|
|
76 |
You can quickly get started with Allegro using the Hugging Face Diffusers library.
|
77 |
For more tutorials, see Allegro GitHub (link-tbd).
|
78 |
|
79 |
-
Install necessary requirements
|
80 |
-
|
81 |
-
pip install diffusers transformers imageio
|
82 |
-
```
|
83 |
-
Inference on single gpu:
|
84 |
```python
|
85 |
from diffusers import DiffusionPipeline
|
86 |
import torch
|
87 |
|
88 |
allegro_pipeline = DiffusionPipeline.from_pretrained(
|
89 |
-
|
90 |
).to("cuda")
|
91 |
|
92 |
allegro_pipeline.vae = allegro_pipeline.vae.to(torch.float32)
|
@@ -121,8 +121,10 @@ out_video = allegro_pipeline(
|
|
121 |
).video[0]
|
122 |
|
123 |
imageio.mimwrite("test_video.mp4", out_video, fps=15, quality=8)
|
124 |
-
|
125 |
```
|
|
|
|
|
|
|
126 |
|
127 |
# License
|
128 |
This repo is released under the Apache 2.0 License.
|
|
|
17 |
|
18 |
|
19 |
# Key Feature
|
20 |
+
- **High-Quality Output**: Generate detailed 6-second videos at 15 FPS with 720x1280 resolution, which can be interpolated to 30 FPS with EMA-VFI.
|
21 |
+
- **Small and Efficient**: Features a 175M parameter VAE and a 2.8B parameter DiT model. Supports multiple precisions (FP32, BF16, FP16) and uses 9.3 GB of GPU memory in BF16 mode with CPU offloading.
|
22 |
+
- **Extensive Context Length**: Handles up to 79.2k tokens, providing rich and comprehensive text-to-video generation capabilities.
|
23 |
+
- **Versatile Content Creation**: Capable of generating a wide range of content, from close-ups of humans and animals to diverse dynamic scenes.
|
24 |
|
25 |
|
26 |
# Model info
|
|
|
32 |
</tr>
|
33 |
<tr>
|
34 |
<th>Description</th>
|
35 |
+
<td>Text-to-Video Generation Model</td>
|
36 |
</tr>
|
37 |
<tr>
|
38 |
<th>Download</th>
|
|
|
79 |
You can quickly get started with Allegro using the Hugging Face Diffusers library.
|
80 |
For more tutorials, see Allegro GitHub (link-tbd).
|
81 |
|
82 |
+
1. Install necessary requirements. Please refer to [requirements.txt](https://github.com/rhymes-ai) on Allegro GitHub.
|
83 |
+
2. Perform inference on a single GPU.
|
|
|
|
|
|
|
84 |
```python
|
85 |
from diffusers import DiffusionPipeline
|
86 |
import torch
|
87 |
|
88 |
allegro_pipeline = DiffusionPipeline.from_pretrained(
|
89 |
+
"rhymes-ai/Allegro", trust_remote_code=True, torch_dtype=torch.bfloat16
|
90 |
).to("cuda")
|
91 |
|
92 |
allegro_pipeline.vae = allegro_pipeline.vae.to(torch.float32)
|
|
|
121 |
).video[0]
|
122 |
|
123 |
imageio.mimwrite("test_video.mp4", out_video, fps=15, quality=8)
|
|
|
124 |
```
|
125 |
+
Tip:
|
126 |
+
- It is highly recommended to use a video frame interpolation model (such as EMA-VFI) to enhance the result to 30 FPS.
|
127 |
+
- For more tutorials, see [Allegro GitHub](https://github.com/rhymes-ai).
|
128 |
|
129 |
# License
|
130 |
This repo is released under the Apache 2.0 License.
|