--- license: apache-2.0 language: - en ---

Gallery · GitHub · Blog · Paper · Discord

# Gallery For more demos and corresponding prompts, see the [Allegro Gallery](TBD). # Key Feature Allegro is capable of producing high-quality, 6-second videos at 30 frames per second and 720p resolution from simple text prompts. # Model info
Model Allegro
Description Text-to-Video Diffusion Transformer
Download <HF link - TBD>
Parameter VAE: 175M
DiT: 2.8B
Inference Precision VAE: FP32/TF32/BF16/FP16 (best in FP32/TF32)
DiT/T5: BF16/FP32/TF32
Context Length 79.2k
Resolution 720 x 1280
Frames 88
Video Length 6 seconds @ 15 fps
Single GPU Memory Usage 9.3G BF16 (with cpu_offload)
# Quick start You can quickly get started with Allegro using the Hugging Face Diffusers library. For more tutorials, see Allegro GitHub (link-tbd). Install necessary requirements: ```python pip install diffusers transformers imageio ``` Inference on single gpu: ```python from diffusers import DiffusionPipeline import torch allegro_pipeline = DiffusionPipeline.from_pretrained( "rhythms-ai/allegro", trust_remote_code=True, torch_dtype=torch.bfloat16 ).to("cuda") allegro_pipeline.vae = allegro_pipeline.vae.to(torch.float32) prompt = "a video of an astronaut riding a horse on mars" positive_prompt = """ (masterpiece), (best quality), (ultra-detailed), (unwatermarked), {} emotional, harmonious, vignette, 4k epic detailed, shot on kodak, 35mm photo, sharp focus, high budget, cinemascope, moody, epic, gorgeous """ negative_prompt = """ nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry. """ num_sampling_steps, guidance_scale, seed = 100, 7.5, 42 user_prompt = positive_prompt.format(args.user_prompt.lower().strip()) out_video = allegro_pipeline( user_prompt, negative_prompt=negative_prompt, num_frames=88, height=720, width=1280, num_inference_steps=num_sampling_steps, guidance_scale=guidance_scale, max_sequence_length=512, generator = torch.Generator(device="cuda:0").manual_seed(seed) ).video[0] imageio.mimwrite("test_video.mp4", out_video, fps=15, quality=8) ``` # License This repo is released under the Apache 2.0 License.