|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
from typing import Tuple |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from transformers import GenerationMixin, LlamaConfig |
|
from transformers.models.llama.modeling_llama import ( |
|
ACT2FN, |
|
LLAMA_ATTENTION_CLASSES, |
|
LlamaDecoderLayer, |
|
LlamaForCausalLM, |
|
LlamaMLP, |
|
LlamaModel, |
|
LlamaRMSNorm, |
|
LlamaRotaryEmbedding, |
|
) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class AriaMoELMConfig(LlamaConfig): |
|
""" |
|
Configuration class for AriaMoE language model. |
|
|
|
This class extends the LlamaConfig to include additional parameters specific to the Mixture of Experts (MoE) architecture. |
|
""" |
|
|
|
model_type = "aria_moe_lm" |
|
|
|
def __init__( |
|
self, |
|
moe_intermediate_size: int = 4096, |
|
moe_num_experts: int = 8, |
|
moe_topk: int = 2, |
|
moe_z_loss_coeff: float = 1e-5, |
|
moe_aux_loss_coeff: float = 1e-3, |
|
moe_num_shared_experts: int = 2, |
|
**kwargs, |
|
): |
|
""" |
|
Initialize the AriaMoELMConfig. |
|
|
|
Args: |
|
moe_intermediate_size (int): The intermediate size for MoE layers. Default is 4096. |
|
moe_num_experts (int): The number of experts in the MoE layer. Default is 8. |
|
moe_topk (int): The number of top experts to route to for each token. Default is 2. |
|
moe_z_loss_coeff (float): The coefficient for the auxiliary z-loss. Default is 1e-5. |
|
moe_aux_loss_coeff (float): The coefficient for the auxiliary load balancing loss. Default is 1e-3. |
|
moe_num_shared_experts (int): The number of shared experts. Default is 2. |
|
**kwargs: Additional keyword arguments to be passed to the parent LlamaConfig. |
|
""" |
|
super().__init__(**kwargs) |
|
self.moe_intermediate_size = moe_intermediate_size |
|
self.moe_num_experts = moe_num_experts |
|
self.moe_topk = moe_topk |
|
self.moe_z_loss_coeff = moe_z_loss_coeff |
|
self.moe_aux_loss_coeff = moe_aux_loss_coeff |
|
self.moe_num_shared_experts = moe_num_shared_experts |
|
|
|
|
|
|
|
class MoEAuxLossAutoScaler(torch.autograd.Function): |
|
"""An AutoScaler that compute and scales the grad for auxiliary loss.""" |
|
|
|
main_loss_backward_scale: torch.Tensor = torch.tensor(1.0) |
|
|
|
@staticmethod |
|
def forward(ctx, output: torch.Tensor, aux_loss: torch.Tensor): |
|
"""Preserve the aux_loss by storing it in the context to avoid garbage collection. |
|
|
|
Args: |
|
output (torch.Tensor): The output tensor. |
|
aux_loss (torch.Tensor): The auxiliary loss tensor. |
|
|
|
Returns: |
|
torch.Tensor: The output tensor. |
|
""" |
|
ctx.save_for_backward(aux_loss) |
|
return output |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output: torch.Tensor): |
|
"""Compute and scale the gradient for auxiliary loss.. |
|
|
|
Args: |
|
grad_output (torch.Tensor): The gradient of the output. |
|
|
|
Returns: |
|
Tuple[torch.Tensor, torch.Tensor]: The gradient of the output, scaled auxiliary loss gradient. |
|
""" |
|
(aux_loss,) = ctx.saved_tensors |
|
aux_loss_backward_scale = MoEAuxLossAutoScaler.main_loss_backward_scale |
|
scaled_aux_loss_grad = torch.ones_like(aux_loss) * aux_loss_backward_scale |
|
return grad_output, scaled_aux_loss_grad |
|
|
|
@staticmethod |
|
def set_loss_scale(scale: torch.Tensor): |
|
"""set the scale of the aux loss. |
|
|
|
Args: |
|
scale (torch.Tensor): The scale value to set. Please ensure that the scale passed in matches the scale of the main_loss. |
|
""" |
|
MoEAuxLossAutoScaler.main_loss_backward_scale = scale |
|
|
|
|
|
def z_loss_func(logits, z_loss_coeff): |
|
"""Encourages the router's logits to remain small to enhance stability. |
|
Please refer to the ST-MoE paper (https://arxiv.org/pdf/2202.08906.pdf) for details. |
|
|
|
Args: |
|
logits (torch.Tensor): The logits of the router. |
|
|
|
Returns: |
|
torch.Tensor: The logits after applying the z-loss. |
|
""" |
|
|
|
z_loss = torch.mean(torch.square(torch.logsumexp(logits, dim=-1))) * z_loss_coeff |
|
return z_loss |
|
|
|
|
|
def switch_load_balancing_loss_func( |
|
probs: torch.Tensor, |
|
tokens_per_expert: torch.Tensor, |
|
topk: int, |
|
moe_aux_loss_coeff: float, |
|
): |
|
"""Calculate the auxiliary loss for better load balancing. |
|
Please refer to the Switch Transformer paper (https://arxiv.org/abs/2101.03961) for details. |
|
|
|
Args: |
|
probs (torch.Tensor): The softmax probs output by the router for each token. [num_tokens, num_experts] |
|
tokens_per_expert (torch.Tensor): The number of assigned tokens for each expert. [num_experts] |
|
|
|
Returns: |
|
torch.Tensor: The auxiliary loss for load balancing. |
|
""" |
|
num_tokens = probs.shape[0] * topk |
|
num_experts = probs.shape[1] |
|
|
|
probs_mean_per_expert = probs.mean(dim=0) |
|
aux_loss = torch.sum(probs_mean_per_expert * tokens_per_expert) * ( |
|
num_experts / num_tokens * moe_aux_loss_coeff |
|
) |
|
return aux_loss |
|
|
|
|
|
|
|
class TopKRouter(nn.Module): |
|
""" |
|
Top-K Router for Mixture of Experts (MoE) models. |
|
|
|
This router determines which experts should process each token based on the top-k scoring experts. |
|
It also applies auxiliary losses to encourage load balancing among experts. |
|
|
|
Args: |
|
config (AriaMoELMConfig): Configuration object containing MoE-related parameters. |
|
""" |
|
|
|
def __init__(self, config: AriaMoELMConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.weight = nn.Parameter( |
|
torch.empty((self.config.moe_num_experts, self.config.hidden_size)) |
|
) |
|
|
|
|
|
def gating(self, input: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Compute the gating logits for each token-expert pair. |
|
|
|
Args: |
|
input (torch.Tensor): Input tensor of shape [batch_size * seq_len, hidden_size]. |
|
|
|
Returns: |
|
torch.Tensor: Logits tensor of shape [batch_size * seq_len, num_experts]. |
|
""" |
|
logits = torch.nn.functional.linear(input, self.weight) |
|
return logits |
|
|
|
def apply_z_loss(self, logits: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Apply z-loss to encourage router logits to remain small for enhanced stability. |
|
|
|
Args: |
|
logits (torch.Tensor): Router logits. |
|
|
|
Returns: |
|
torch.Tensor: Logits with z-loss applied. |
|
""" |
|
z_loss = z_loss_func(logits, self.config.moe_z_loss_coeff) |
|
logits = MoEAuxLossAutoScaler.apply(logits, z_loss) |
|
return logits |
|
|
|
def apply_aux_loss( |
|
self, |
|
logits: torch.Tensor, |
|
tokens_per_expert: torch.Tensor, |
|
activation: torch.Tensor, |
|
) -> torch.Tensor: |
|
""" |
|
Apply auxiliary loss for load balancing among experts. |
|
|
|
Args: |
|
logits (torch.Tensor): Router logits. |
|
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert. |
|
activation (torch.Tensor): Activation values. |
|
|
|
Returns: |
|
torch.Tensor: Activation with auxiliary loss applied. |
|
""" |
|
probs = torch.softmax(logits, dim=-1, dtype=torch.float32) |
|
aux_loss = switch_load_balancing_loss_func( |
|
probs, |
|
tokens_per_expert, |
|
self.config.moe_topk, |
|
self.config.moe_aux_loss_coeff, |
|
) |
|
return MoEAuxLossAutoScaler.apply(activation, aux_loss) |
|
|
|
def routing( |
|
self, logits: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Perform the routing operation to determine expert assignments. |
|
|
|
Args: |
|
logits (torch.Tensor): Router logits. |
|
|
|
Returns: |
|
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
- scores: Softmax probabilities for top-k experts. |
|
- top_indices: Indices of top-k experts for each token. |
|
- tokens_per_expert: Number of tokens assigned to each expert. |
|
""" |
|
if self.training: |
|
logits = self.apply_z_loss(logits) |
|
|
|
top_logits, top_indices = torch.topk(logits, k=self.config.moe_topk, dim=1) |
|
scores = torch.softmax(top_logits, dim=-1, dtype=torch.float32).type_as(logits) |
|
|
|
tokens_per_expert = torch.histc( |
|
top_indices.flatten(), |
|
bins=self.config.moe_num_experts, |
|
min=0, |
|
max=self.config.moe_num_experts - 1, |
|
) |
|
|
|
if self.training: |
|
scores = self.apply_aux_loss(logits, tokens_per_expert, scores) |
|
return scores, top_indices, tokens_per_expert |
|
|
|
def forward( |
|
self, input: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Forward pass of the TopKRouter. |
|
|
|
Args: |
|
input (torch.Tensor): Input tensor of shape [batch_size * seq_len, hidden_size]. |
|
|
|
Returns: |
|
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
- scores: Softmax probabilities for top-k experts. |
|
- top_indices: Indices of top-k experts for each token. |
|
- tokens_per_expert: Number of tokens assigned to each expert. |
|
""" |
|
logits = self.gating(input) |
|
logits = logits.view(-1, self.config.moe_num_experts) |
|
scores, top_indices, tokens_per_expert = self.routing(logits) |
|
return scores, top_indices, tokens_per_expert |
|
|
|
|
|
|
|
class TokenDispatcher: |
|
""" |
|
Handles the dispatching and gathering of tokens to and from experts. |
|
|
|
This class is responsible for permuting tokens based on expert assignments and |
|
unpermuting them after expert processing. |
|
|
|
Args: |
|
config (AriaMoELMConfig): Configuration object containing MoE-related parameters. |
|
""" |
|
|
|
def __init__(self, config: AriaMoELMConfig): |
|
self.config = config |
|
self.hidden_states_shape = None |
|
self.reversed_input_permutation_mapping = None |
|
|
|
def token_permutation( |
|
self, hidden_states: torch.Tensor, indices: torch.Tensor |
|
) -> torch.Tensor: |
|
""" |
|
Permute tokens based on expert assignments. |
|
|
|
Args: |
|
hidden_states (torch.Tensor): Input hidden states. |
|
indices (torch.Tensor): Expert assignment indices. |
|
|
|
Returns: |
|
torch.Tensor: Permuted tokens. |
|
""" |
|
self.hidden_states_shape = hidden_states.shape |
|
hidden_states = hidden_states.view(-1, hidden_states.size(-1)) |
|
flatten_indices = indices.flatten() |
|
sorted_indices = torch.argsort(flatten_indices, stable=True) |
|
permuted_tokens = hidden_states.index_select( |
|
0, sorted_indices // self.config.moe_topk |
|
) |
|
self.reversed_input_permutation_mapping = sorted_indices |
|
return permuted_tokens |
|
|
|
def token_unpermutation( |
|
self, permuted_tokens: torch.Tensor, scores: torch.Tensor |
|
) -> torch.Tensor: |
|
""" |
|
Unpermute tokens and combine expert outputs. |
|
|
|
Args: |
|
permuted_tokens (torch.Tensor): Tokens after expert processing. |
|
scores (torch.Tensor): Expert assignment scores. |
|
|
|
Returns: |
|
torch.Tensor: Unpermuted and combined output. |
|
""" |
|
num_unpermuted_tokens = scores.numel() |
|
unpermuted_tokens = torch.zeros( |
|
(num_unpermuted_tokens, permuted_tokens.size(1)), |
|
dtype=permuted_tokens.dtype, |
|
device=permuted_tokens.device, |
|
) |
|
unpermuted_tokens.index_copy_( |
|
0, self.reversed_input_permutation_mapping, permuted_tokens |
|
) |
|
unpermuted_tokens = unpermuted_tokens.reshape( |
|
-1, self.config.moe_topk, permuted_tokens.size(1) |
|
) |
|
|
|
unpermuted_tokens = unpermuted_tokens * scores.unsqueeze(-1) |
|
unpermuted_tokens = unpermuted_tokens.sum(dim=1).type_as(permuted_tokens) |
|
output = unpermuted_tokens.view(self.hidden_states_shape) |
|
return output |
|
|
|
|
|
class SharedExpertMLP(LlamaMLP): |
|
""" |
|
Shared Expert MLP for shared experts. |
|
|
|
Unlike routed experts, shared experts process all tokens without routing. |
|
This class reconfigures the intermediate size in comparison to the LlamaMLP. |
|
|
|
Args: |
|
config (AriaMoELMConfig): Configuration object for the AriaMoE language model. |
|
""" |
|
|
|
def __init__(self, config: AriaMoELMConfig): |
|
nn.Module.__init__(self) |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = ( |
|
config.moe_intermediate_size * config.moe_num_shared_experts |
|
) |
|
self.gate_proj = nn.Linear( |
|
self.hidden_size, self.intermediate_size, bias=config.mlp_bias |
|
) |
|
self.up_proj = nn.Linear( |
|
self.hidden_size, self.intermediate_size, bias=config.mlp_bias |
|
) |
|
self.down_proj = nn.Linear( |
|
self.intermediate_size, self.hidden_size, bias=config.mlp_bias |
|
) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def sequential_gemm(input, weight, tokens_per_expert): |
|
""" |
|
Compute the matrix multiplication (GEMM) for each expert sequentially. This approach is computationally inefficient, especially when dealing with a large number of experts. |
|
|
|
Args: |
|
input (torch.Tensor): Input tensor of shape (num_tokens, in_features). |
|
weight (torch.Tensor): Weight tensor of shape (num_experts, in_features, out_features). |
|
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert. |
|
|
|
Returns: |
|
torch.Tensor: Output tensor of shape (num_tokens, out_features). |
|
""" |
|
num_tokens = input.shape[0] |
|
out_features = weight.shape[-1] |
|
output = torch.zeros( |
|
num_tokens, out_features, dtype=input.dtype, device=input.device |
|
) |
|
|
|
cumsum_num_tokens = torch.cumsum(tokens_per_expert, dim=0) |
|
|
|
zero_tensor = torch.zeros(1, dtype=torch.long, device=cumsum_num_tokens.device) |
|
cumsum_num_tokens = torch.cat((zero_tensor, cumsum_num_tokens)) |
|
|
|
for expert_num in range(weight.shape[0]): |
|
start = cumsum_num_tokens[expert_num] |
|
end = cumsum_num_tokens[expert_num + 1] |
|
tokens = input[start:end] |
|
|
|
out = torch.matmul(tokens, weight[expert_num]) |
|
output[start:end] = out |
|
return output |
|
|
|
|
|
try: |
|
from grouped_gemm.ops import gmm as experts_gemm |
|
|
|
if os.environ.get("USE_GROUPED_GEMM", "1") == "0": |
|
logger.warning( |
|
"environment variable USE_GROUPED_GEMM is set to 0, using sequential GEMM instead." |
|
) |
|
experts_gemm = sequential_gemm |
|
except ImportError: |
|
logger.warning( |
|
"`grouped_gemm` is not installed, using sequential GEMM, which is slower." |
|
) |
|
experts_gemm = sequential_gemm |
|
|
|
|
|
class GroupedGEMM(nn.Module): |
|
""" |
|
Grouped GEMM (General Matrix Multiplication) module for efficient expert computation. |
|
This module utilizes the grouped_gemm library (https://github.com/fanshiqing/grouped_gemm) |
|
for optimized performance. If the grouped_gemm library is not installed, it gracefully |
|
falls back to a sequential GEMM implementation, which may be slower but ensures |
|
functionality. |
|
|
|
Args: |
|
in_features (int): Number of input features. |
|
out_features (int): Number of output features. |
|
groups (int): Number of expert groups. |
|
""" |
|
|
|
def __init__(self, in_features, out_features, groups): |
|
super().__init__() |
|
self.in_features = in_features |
|
self.out_features = out_features |
|
self.groups = groups |
|
self.weight = nn.Parameter(torch.empty(groups, in_features, out_features)) |
|
|
|
def forward(self, input, tokens_per_expert): |
|
""" |
|
Perform grouped matrix multiplication. |
|
|
|
Args: |
|
input (torch.Tensor): Input tensor of shape (num_tokens, in_features). |
|
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert. |
|
|
|
Returns: |
|
torch.Tensor: Output tensor of shape (num_tokens, out_features). |
|
""" |
|
tokens_per_expert = tokens_per_expert.cpu() |
|
|
|
|
|
|
|
|
|
torch.cuda.set_device(input.device) |
|
return experts_gemm(input, self.weight, tokens_per_expert) |
|
|
|
|
|
class GroupedMLP(nn.Module): |
|
""" |
|
Grouped MLP module for Mixture of Experts. |
|
|
|
Args: |
|
config (AriaMoELMConfig): Configuration object for the model. |
|
""" |
|
|
|
def __init__(self, config: AriaMoELMConfig) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.fc1 = GroupedGEMM( |
|
config.hidden_size, config.moe_intermediate_size * 2, config.moe_num_experts |
|
) |
|
self.fc2 = GroupedGEMM( |
|
config.moe_intermediate_size, config.hidden_size, config.moe_num_experts |
|
) |
|
|
|
def glu(x): |
|
x = torch.chunk(x, 2, dim=-1) |
|
return F.silu(x[0]) * x[1] |
|
|
|
self.activation_func = glu |
|
|
|
def forward(self, permuted_tokens, tokens_per_expert): |
|
""" |
|
Forward pass of the Grouped MLP. |
|
|
|
Args: |
|
permuted_tokens (torch.Tensor): Permuted input tokens. |
|
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert. |
|
|
|
Returns: |
|
torch.Tensor: Output tensor after passing through the MLP. |
|
""" |
|
fc1_output = self.fc1(permuted_tokens, tokens_per_expert) |
|
fc1_output = self.activation_func(fc1_output) |
|
fc2_output = self.fc2(fc1_output, tokens_per_expert) |
|
return fc2_output |
|
|
|
|
|
class MoELayer(nn.Module): |
|
""" |
|
Mixture of Experts (MoE) Layer for the AriaMoE model. |
|
|
|
This layer implements the MoE mechanism, which routes input tokens to different experts |
|
based on a routing algorithm, processes them through the experts, and then combines |
|
the outputs. |
|
|
|
Args: |
|
config (AriaMoELMConfig): Configuration object for the MoE layer. |
|
""" |
|
|
|
def __init__(self, config: AriaMoELMConfig): |
|
super().__init__() |
|
|
|
self.router = TopKRouter(config) |
|
self.token_dispatcher = TokenDispatcher(config) |
|
self.experts = GroupedMLP(config) |
|
self.shared_experts = SharedExpertMLP(config) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Forward pass of the MoE Layer. |
|
|
|
Args: |
|
hidden_states (torch.Tensor): Input tensor of shape (batch_size, sequence_length, hidden_size). |
|
|
|
Returns: |
|
torch.Tensor: Output tensor after passing through the MoE layer. |
|
|
|
Process: |
|
1. Route tokens to experts using the router. |
|
2. Permute tokens based on routing decisions. |
|
3. Process tokens through experts. |
|
4. Unpermute and combine expert outputs. |
|
5. Add shared expert output to the final result. |
|
""" |
|
scores, indices, tokens_per_expert = self.router(hidden_states) |
|
|
|
permuted_tokens = self.token_dispatcher.token_permutation( |
|
hidden_states, indices |
|
) |
|
|
|
expert_output = self.experts(permuted_tokens, tokens_per_expert) |
|
|
|
output = self.token_dispatcher.token_unpermutation(expert_output, scores) |
|
|
|
shared_expert_output = self.shared_experts(hidden_states) |
|
output += shared_expert_output |
|
return output |
|
|
|
|
|
class MoEDecoderLayer(LlamaDecoderLayer): |
|
""" |
|
Custom Decoder Layer for the AriaMoE model which modifies the standard `LlamaDecoderLayer` by |
|
replacing the traditional MLP with a Mixture of Experts (MoE) Layer. |
|
|
|
Args: |
|
config (LlamaConfig): Configuration object for the layer. |
|
layer_idx (int): Index of the current layer in the model. |
|
""" |
|
|
|
def __init__(self, config: LlamaConfig, layer_idx: int): |
|
nn.Module.__init__(self) |
|
self.hidden_size = config.hidden_size |
|
|
|
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation]( |
|
config=config, layer_idx=layer_idx |
|
) |
|
|
|
self.mlp = MoELayer(config) |
|
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = LlamaRMSNorm( |
|
config.hidden_size, eps=config.rms_norm_eps |
|
) |
|
|
|
|
|
class AriaMoELMModel(LlamaModel): |
|
""" |
|
Custom LlamaModel for the AriaMoE model which modifies the standard LlamaModel by |
|
replacing the `LlamaDecoderLayer` with `MoEDecoderLayer`. |
|
|
|
This model implements a Mixture of Experts (MoE) approach, where each layer contains |
|
multiple expert networks that specialize in different aspects of the input. |
|
|
|
Args: |
|
config (LlamaConfig): Configuration object for the model. |
|
""" |
|
|
|
def __init__(self, config: LlamaConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding( |
|
config.vocab_size, config.hidden_size, self.padding_idx |
|
) |
|
self.layers = nn.ModuleList( |
|
[ |
|
MoEDecoderLayer(config, layer_idx) |
|
for layer_idx in range(config.num_hidden_layers) |
|
] |
|
) |
|
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.rotary_emb = LlamaRotaryEmbedding(config=config) |
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
class AriaMoELMForCausalLM(LlamaForCausalLM, GenerationMixin): |
|
""" |
|
AriaMoE model for causal language modeling tasks. |
|
|
|
This class extends LlamaForCausalLM to incorporate the Mixture of Experts (MoE) approach, |
|
allowing for more efficient and scalable language modeling. |
|
|
|
Args: |
|
config (AriaMoELMConfig): Configuration object for the model. |
|
""" |
|
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
config_class = AriaMoELMConfig |
|
_no_split_modules = ["MoEDecoderLayer"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = AriaMoELMModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def set_z_loss_coeff(self, z_loss_coeff: float): |
|
""" |
|
Set the coefficient for the z-loss in the MoE routing. |
|
|
|
Args: |
|
z_loss_coeff (float): The coefficient for the z-loss. |
|
""" |
|
self.config.moe_z_loss_coeff = z_loss_coeff |
|
|
|
def set_aux_loss_coeff(self, aux_loss_coeff: float): |
|
""" |
|
Set the coefficient for the auxiliary loss in the MoE routing. |
|
|
|
Args: |
|
aux_loss_coeff (float): The coefficient for the auxiliary loss. |
|
""" |
|
self.config.moe_aux_loss_coeff = aux_loss_coeff |
|
|