File size: 25,231 Bytes
9c1d2b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
# Copyright 2024 Rhymes AI. All rights reserved.
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
from torch import nn
from transformers import PreTrainedModel
from transformers.cache_utils import Cache
from transformers.modeling_outputs import ModelOutput
from transformers.utils import logging

from .configuration_aria import AriaConfig
from .moe_lm import AriaMoELMForCausalLM
from .projector import AriaProjector
from .vision_encoder import AriaVisionModel

logger = logging.get_logger(__name__)


class AriaPretrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
    """

    config_class = AriaConfig
    base_model_prefix = "model"
    _no_split_modules = []
    supports_gradient_checkpointing = True
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_cache_class = True

    @property
    def _supports_sdpa(self):
        """
        Retrieve language_model's attribute to check whether the model supports
        SDPA (Scaled Dot Product Attention) or not.
        """
        return self.language_model._supports_sdpa


@dataclass
# Copied from transformers.models.llava.modeling_llava.LlavaCausalLMOutputWithPast with Llava->Aria
class AriaCausalLMOutputWithPast(ModelOutput):
    """
    Base class for Aria causal language model (or autoregressive) outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss (for next-token prediction).
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

            Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
            `past_key_values` input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
            Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
            sequence_length, hidden_size)`.

            image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None


def build_mm_projector(config: AriaConfig):
    """
    Builds and returns an AriaProjector instance based on the provided configuration.

    Args:
        config (AriaConfig): The configuration object containing necessary parameters.

    Returns:
        AriaProjector: An instance of the AriaProjector class.
    """
    return AriaProjector(
        patch_to_query_dict=config.projector_patch_to_query_dict,
        embed_dim=config.vision_config.hidden_size,
        num_heads=config.vision_config.num_attention_heads,
        kv_dim=config.vision_config.hidden_size,
        ff_dim=config.text_config.hidden_size,
        output_dim=config.text_config.hidden_size,
    )


# adapted from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration
class AriaForConditionalGeneration(AriaPretrainedModel):
    """
    Aria model for conditional generation tasks.

    This model combines a vision tower, a multi-modal projector, and a language model
    to perform tasks that involve both image and text inputs.
    """

    def __init__(self, config: AriaConfig):
        super().__init__(config)

        self.vision_tower = AriaVisionModel(config.vision_config)
        self.multi_modal_projector = build_mm_projector(config)
        self.vocab_size = config.text_config.vocab_size
        self.language_model = AriaMoELMForCausalLM(config.text_config)
        self.pad_token_id = (
            self.config.pad_token_id if self.config.pad_token_id is not None else -1
        )
        self.post_init()

    def freeze_vit(self):
        """Freeze the parameters of the vision tower."""
        for param in self.vision_tower.parameters():
            param.requires_grad = False

    def freeze_projector(self):
        """Freeze the parameters of the multi-modal projector."""
        for param in self.multi_modal_projector.parameters():
            param.requires_grad = False

    def freeze_llm(self):
        """Freeze the parameters of the language model."""
        for param in self.language_model.parameters():
            param.requires_grad = False

    def get_input_embeddings(self) -> nn.Module:
        """Retrieve the input embeddings from the language model."""
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        """Set the input embeddings for the language model."""
        self.language_model.set_input_embeddings(value)

    def set_moe_z_loss_coeff(self, value):
        """
        Set the z-loss coefficient for Mixture of Experts (MoE) models.

        Args:
            value: The z-loss coefficient value to set.
        """
        self.language_model.set_z_loss_coeff(value)

    def set_moe_aux_loss_coeff(self, value):
        """
        Set the auxiliary loss coefficient for Mixture of Experts (MoE) models.

        Args:
            value: The auxiliary loss coefficient value to set.
        """
        self.language_model.set_aux_loss_coeff(value)

    # copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration
    def _merge_input_ids_with_image_features(
        self, image_features, inputs_embeds, input_ids, attention_mask, labels
    ):
        """
        Merge input IDs with image features to create a combined input representation.

        This method handles the complex logic of interleaving text and image tokens,
        adjusting attention masks and labels accordingly.

        Args:
            image_features (torch.Tensor): Processed image features.
            inputs_embeds (torch.Tensor): Text input embeddings.
            input_ids (torch.Tensor): Input token IDs.
            attention_mask (torch.Tensor): Attention mask for input tokens.
            labels (torch.Tensor, optional): Labels for language modeling.

        Returns:
            tuple: Contains the merged embeddings, updated attention mask,
                   updated labels, and position IDs.
        """
        num_images, num_image_patches, embed_dim = image_features.shape
        batch_size, sequence_length = input_ids.shape
        left_padding = not torch.sum(
            input_ids[:, -1] == torch.tensor(self.pad_token_id)
        )
        # 1. Create a mask to know where special image tokens are
        special_image_token_mask = input_ids == self.config.image_token_index
        num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
        # Compute the maximum embed dimension
        max_embed_dim = (
            num_special_image_tokens.max() * (num_image_patches - 1)
        ) + sequence_length
        batch_indices, non_image_indices = torch.where(
            input_ids != self.config.image_token_index
        )

        # 2. Compute the positions where text should be written
        # Calculate new positions for text tokens in merged image-text sequence.
        # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
        # `torch.cumsum` computes how each image token shifts subsequent text token positions.
        # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
        new_token_positions = (
            torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1)
            - 1
        )
        nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
        if left_padding:
            new_token_positions += nb_image_pad[:, None]  # offset for left padding
        text_to_overwrite = new_token_positions[batch_indices, non_image_indices]

        # 3. Create the full embedding, already padded to the maximum position
        final_embedding = torch.zeros(
            batch_size,
            max_embed_dim,
            embed_dim,
            dtype=inputs_embeds.dtype,
            device=inputs_embeds.device,
        )
        final_attention_mask = torch.zeros(
            batch_size,
            max_embed_dim,
            dtype=attention_mask.dtype,
            device=inputs_embeds.device,
        )
        if labels is not None:
            final_labels = torch.full(
                (batch_size, max_embed_dim),
                self.config.ignore_index,
                dtype=input_ids.dtype,
                device=input_ids.device,
            )
        # In case the Vision model or the Language model has been offloaded to CPU, we need to manually
        # set the corresponding tensors into their correct target device.
        target_device = inputs_embeds.device
        batch_indices, non_image_indices, text_to_overwrite = (
            batch_indices.to(target_device),
            non_image_indices.to(target_device),
            text_to_overwrite.to(target_device),
        )
        attention_mask = attention_mask.to(target_device)

        # 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
        # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
        final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[
            batch_indices, non_image_indices
        ]
        final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[
            batch_indices, non_image_indices
        ]
        if labels is not None:
            final_labels[batch_indices, text_to_overwrite] = labels[
                batch_indices, non_image_indices
            ]

        # 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
        image_to_overwrite = torch.full(
            (batch_size, max_embed_dim),
            True,
            dtype=torch.bool,
            device=inputs_embeds.device,
        )
        image_to_overwrite[batch_indices, text_to_overwrite] = False
        image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[
            :, None
        ].to(target_device)

        if image_to_overwrite.sum() != image_features.shape[:-1].numel():
            raise ValueError(
                f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
                f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
            )

        final_embedding[image_to_overwrite] = (
            image_features.contiguous().reshape(-1, embed_dim).to(target_device)
        )
        final_attention_mask |= image_to_overwrite
        position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_(
            (final_attention_mask == 0), 1
        )

        # 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
        batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id)
        indices_to_mask = new_token_positions[batch_indices, pad_indices]

        final_embedding[batch_indices, indices_to_mask] = 0

        if labels is None:
            final_labels = None

        return final_embedding, final_attention_mask, final_labels, position_ids

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        pixel_values: torch.FloatTensor = None,
        pixel_mask: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, AriaCausalLMOutputWithPast]:
        """
        Forward pass of the AriaForConditionalGeneration model.

        This method processes both text and image inputs, merges them if necessary,
        and generates output using the language model.

        Args:
            input_ids (torch.LongTensor, optional): Input token ids.
            pixel_values (torch.FloatTensor, optional): Pixel values of the images.
            pixel_mask (torch.LongTensor, optional): Mask for the pixel values.
            attention_mask (torch.Tensor, optional): Attention mask.
            position_ids (torch.LongTensor, optional): Position ids.
            past_key_values (List[torch.FloatTensor], optional): Past key values for efficient processing.
            inputs_embeds (torch.FloatTensor, optional): Input embeddings.
            labels (torch.LongTensor, optional): Labels for computing the language modeling loss.
            use_cache (bool, optional): Whether to use the model's cache mechanism.
            output_attentions (bool, optional): Whether to output attention weights.
            output_hidden_states (bool, optional): Whether to output hidden states.
            return_dict (bool, optional): Whether to return a ModelOutput object.

        Returns:
            Union[Tuple, AriaCausalLMOutputWithPast]: Model outputs.
        """
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if inputs_embeds is None:
            # 1. Extra the input embeddings
            inputs_embeds = self.get_input_embeddings()(input_ids)

            # 2. Merge text and images
            if pixel_values is not None and input_ids.shape[1] != 1:
                image_outputs, image_attn_mask = self.vision_tower(
                    pixel_values,
                    pixel_mask=pixel_mask,
                )
                selected_image_feature = image_outputs.last_hidden_state

                image_features = self.multi_modal_projector(
                    selected_image_feature, attn_mask=image_attn_mask
                )

                inputs_embeds = inputs_embeds.to(image_features.dtype)
                (
                    inputs_embeds,
                    attention_mask,
                    labels,
                    position_ids,
                ) = self._merge_input_ids_with_image_features(
                    image_features, inputs_embeds, input_ids, attention_mask, labels
                )

            # In case input_ids.shape[1] == 1 & pixel_values != None & past_key_values != None, we are in the case of
            # generation with cache
            elif (
                past_key_values is not None
                and pixel_values is not None
                and input_ids.shape[1] == 1
            ):
                # Retrieve the first layer to inspect the logits and mask out the hidden states
                # that are set to 0
                first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]

                # Sum all dimensions of head_dim (-2) to avoid random errors
                # such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
                batch_index, non_attended_tokens = torch.where(
                    first_layer_past_key_value.float().sum(-2) == 0
                )

                # Get the target length
                target_length = input_ids.shape[1]
                past_length = first_layer_past_key_value.shape[-1]

                extended_attention_mask = torch.ones(
                    (attention_mask.shape[0], past_length),
                    dtype=attention_mask.dtype,
                    device=attention_mask.device,
                )

                # Filter out only the tokens that can be un-attended, this can happen
                # if one uses Llava + Fused modules where the cache on the
                # first iteration is already big enough, or if one passes custom cache
                valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
                new_batch_index = batch_index[valid_indices]
                new_non_attended_tokens = non_attended_tokens[valid_indices]

                # Zero-out the places where we don't need to attend
                extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0

                attention_mask = torch.cat(
                    (extended_attention_mask, attention_mask[:, -target_length:]), dim=1
                )
                position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1

        outputs = self.language_model(
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        logits = outputs[0]

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            if attention_mask is not None:
                shift_attention_mask = attention_mask[..., 1:]
                shift_logits = logits[..., :-1, :][
                    shift_attention_mask.to(logits.device) != 0
                ].contiguous()
                shift_labels = labels[..., 1:][
                    shift_attention_mask.to(labels.device) != 0
                ].contiguous()
            else:
                shift_logits = logits[..., :-1, :].contiguous()
                shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)),
                shift_labels.view(-1).to(shift_logits.device),
            )

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return AriaCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        inputs_embeds=None,
        pixel_values=None,
        pixel_mask=None,
        attention_mask=None,
        **kwargs,
    ):
        """
        Prepare inputs for generation step.

        This method prepares the inputs for the generation step, handling both
        text and image inputs, and managing the model's cache mechanism.

        Args:
            input_ids (torch.LongTensor): Input token ids.
            past_key_values (Cache or List[torch.FloatTensor], optional): Past key values for efficient processing.
            inputs_embeds (torch.FloatTensor, optional): Input embeddings.
            pixel_values (torch.FloatTensor, optional): Pixel values of the images.
            pixel_mask (torch.LongTensor, optional): Mask for the pixel values.
            attention_mask (torch.Tensor, optional): Attention mask.
            **kwargs: Additional keyword arguments.

        Returns:
            dict: A dictionary containing the prepared inputs for the generation step.
        """
        if past_key_values is not None:
            if isinstance(past_key_values, Cache):
                cache_length = past_key_values.get_seq_length()
                past_length = past_key_values.seen_tokens
            else:
                cache_length = past_length = past_key_values[0][0].shape[2]

            # Keep only the unprocessed tokens:
            # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
            # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
            # input)
            if (
                attention_mask is not None
                and attention_mask.shape[1] > input_ids.shape[1]
            ):
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]
            # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
            elif self.config.image_token_index in input_ids:
                input_ids = input_ids[:, input_ids.shape[1] - 1 :]
            # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
            # older attention values, as their corresponding values are not part of the input.
            if cache_length < past_length and attention_mask is not None:
                attention_mask = attention_mask[
                    :, -(cache_length + input_ids.shape[1]) :
                ]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "position_ids": position_ids,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "pixel_values": pixel_values,
                "pixel_mask": pixel_mask,
            }
        )
        return model_inputs